Exercice 1.

Calculer Re(z), Im(z), \bar{z} , arg(z), $\frac{1}{z}$ pour les nombres complexes $z \in \mathbb{C}$ suivants:

$$z = 1 + i$$
, $z = 14$, $z = 2 - 2\sqrt{3}i$, $z = -\pi i$.

Exercice 2.

- (a) Soit z = a + bi. Si $a > 0, b \ge 0$, on a vu que $\arg(z) = \arctan(b/a)$. Trouver et démontrer une formule pour arg(z) dans les cas où (i) a > 0, b < 0, (ii) $a < 0, b \ge 0$, (iii) a < 0, b < 0 et (iv) a = 0.
- (b) Montrer que si $z_1, z_2 \in \mathbb{C}$, alors $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$, $\overline{z_1 z_2} = \overline{z_1} \, \overline{z_2}$ et $\overline{z_1/z_2} = \overline{z_1}/\overline{z_2}$.
- (c) Pour $z \in \mathbb{C}$, montrer que $\overline{e^z} = e^{\overline{z}}$.

Exercice 3.

Écrire les nombres complexes suivants en forme cartésienne et en forme polaire (exponentielle).

(a)
$$2(1+i)$$

(d)
$$(2-3i)(3+2i)$$

(g)
$$e^{i-50}$$

(b)
$$3e^{i\frac{\pi}{2}}$$

(e)
$$\frac{2-3i}{3+2i}$$

(h)
$$\frac{1}{1+i} + \frac{1}{1+2i}$$

(c)
$$\frac{8i^{21}-2i^{11}}{1-i}$$

(f)
$$\left(\frac{1}{i}\right)^{19}$$

(i)
$$e^{i\frac{\pi}{8}} + e^{i\frac{3\pi}{8}}$$

Exercice 4.

Résoudre les équations suivantes pour $z \in \mathbb{C}$.

(a)
$$z^5 = -1$$

(c)
$$z^4 = -2i$$

(e)
$$z^2 + 6z + 12 - 4i = 0$$

(b)
$$z^2 = 3 - 4i$$

(d)
$$z^2 = (1 + \sqrt{3}i)^8$$
 (f) $z^6 + 4z^3 + 2 = 0$

(f)
$$z^6 + 4z^3 + 2 = 0$$

Exercice 5.

- (a) Soit $P(z) = a_n z^n + \cdots + a_1 z + a_0$ un polynôme a coéfficients réels (i.e. $a_i \in \mathbb{R}$), et $z_0 \in \mathbb{C}$ est une racine de P. Montrer que $\overline{z_0}$ est aussi une racine de P. Est-ce toujours vrai si les a_i ne sont pas tous réels?
- (b) Décomposer le polynôme z^5+1 en produit de facteurs irréductibles complexes, puis en produit de facteurs irréductibles réels.
- (c) Les racines du polynôme $z^4 6z^3 + 10z^2 + 2z 15$ sont:

$$\bigcap$$
 (iii) $2+i$, $2-i$, 3 , -1

(ii)
$$2+i$$
, $1+i$, 3 , -1

$$\bigcap$$
 (iv) $1+i, 1-i, 5, -1$

Exercice 6.

- (a) (Re)démontrer que $\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$.
- (b) Prouver l'égalité suivante:

$$\{z \in \mathbb{C} \mid z \neq 0 \text{ et } z + \frac{1}{z} \in \mathbb{R}\} = \{z \in \mathbb{C} \mid z \neq 0 \text{ et } \text{Im}(z) = 0 \text{ ou } |z| = 1\}.$$

Exercice 7.

Vrai ou faux?

- (a) Pour $z \in \mathbb{C}$, $e^{\arg(z)} = \arg(e^z)$. (c) Pour $z \in \mathbb{C}$, $e^{\operatorname{Re}(z)} = \operatorname{Re}(e^z)$.
- (b) Pour $z \in \mathbb{C}$, $e^{|z|} = |e^z|$.
- (d) Pour $z \in \mathbb{C}$, $e^{\operatorname{Re}(z)} = |e^z|$.

Exercice 8.

Montrer qu'une suite (a_n) est bornée si et seulement s'il existe $M \in \mathbb{R}$ tel que $|a_n| \leq M$ pour tout $n \in \mathbb{N}$.

Exercice 9.

Soit $a_n = ar^n$ $(n \in \mathbb{N})$ une suite géométrique <u>avec a > 0</u>. Montrer que (a_n) est

- (a) bornée si et seulement si $r \in [-1, 1]$
- (b) minorée si et seulement si $r \ge -1$
- (c) strictement croissante si et seulement si r > 1
- (d) strictement décroissante si et seulement si 0 < r < 1
- (e) constante si et seulement si r=1.