EPFL – Sections SIE/GC/SC

18.09.2024

Exercice 1.

Montrer que $\sqrt[3]{2} \notin \mathbb{Q}$ et $\sqrt{3} \notin \mathbb{Q}$. Puis, montrer que $\sqrt{2} \in \mathbb{R}$.

Exercice 2.

Soit I = [p, q] où $p, q \in \mathbb{R}$, et p < q. Montrer soigneusement et précisément que $\sup I = q$ et inf I = p. Les quantités $\max I$ et $\min I$ existent-elles? Si oui, les calculer.

Exercice 3.

Parmi les sous-ensembles $A\subseteq\mathbb{R}$ suivants, déterminer s'ils sont majorés, minorés ou bornés, calculer $\sup A$ et $\inf A$, ainsi que $\max A$ et $\min A$ (s'ils existent).

(a)
$$A =]-1, \sqrt{2}].$$

(f)
$$A = \left\{ \frac{(-1)^n}{n} \mid n \in \mathbb{N}^* \right\}.$$

(b)
$$A =]\sqrt{3}, \infty[.$$

(c)
$$A = \{x \in \mathbb{R} \mid |2x - 1| \le 1\}.$$

(g)
$$A = \left\{ \frac{n}{n+1} \mid n \in \mathbb{N} \right\}.$$

(d)
$$A = \left\{ \frac{1}{n} \mid n \in \mathbb{N}^* \right\}.$$

(h)
$$A = \mathbb{Q}$$
.

(e)
$$A = \left\{ \frac{(-1)^{2n+1} + (-1)^{4n-2}}{(-1)^{n+3}} \mid n \in \mathbb{N} \right\}.$$

(h)
$$A = \mathbb{Q}$$
.
(i) $A = [-\sqrt{2}, \sqrt{2}] \cap \mathbb{Q}$.

Exercice 4.

Réécrire les ensemble suivants en utilisant la notation d'intervalles.

(a)
$$A = \{x \in \mathbb{R} \mid |x+1| < 1\}.$$

(a)
$$A = \{x \in \mathbb{R} \mid |x+1| \le 1\}.$$
 (d) $A = \{x \in \mathbb{R} \mid -x < 3 \text{ et } x^2 \ge 4\}.$

(b)
$$A = \{x \in \mathbb{R} \mid -x < 1\}.$$

(e)
$$A = \{x \in \mathbb{R} \mid -x^3 \ge 3\}.$$

(c)
$$A = \{x \in \mathbb{R} \mid x^2 > 2\}.$$

(f)
$$A = \{x \in \mathbb{R} \mid |x^2 - 2| < 1\}.$$

Exercice 5.

- (a) Montrer que $0.\overline{9} = 1$.
- (b) Écrire 3.14159 et $55.\overline{612}$ sous forme de fraction $\frac{a}{b}$.
- (c) Déterminer (sans calculatrice!) la représentation décimale de $\frac{8}{13}$.

Exercice 6.

Vrai ou faux?

- (a) La somme de deux nombres rationnels est rationnelle.
- (b) La somme de deux nombres irrationnels est irrationnelle.
- (c) La somme d'un nombre rationnel et d'un nombre irrationnel est irrationnelle.
- (d) Si $A \subseteq \mathbb{R}$ est majoré, alors $\max A \in \mathbb{R}$ existe.
- (e) Si $A \subseteq \mathbb{R}$ est majoré, alors sup $A \in \mathbb{R}$ existe.
- (f) Pour $A \subseteq \mathbb{R}$, si sup $A = \inf A$, alors A ne contient qu'un élément.

Exercice 7.

Écrire les nombres complexes i^7 , $(2-3i)^2$, $\frac{1}{2+i}$, $(1+i)^2$, $(1+i)^4$, et $(1+\sqrt{3}i)^6$ sous la forme a + bi, avec $a, b \in \mathbb{R}$.