Exercice 1.

On considère les ensembles $E = \{1, 2, 3, 4, 5\}, A = \{1, 3\}, B = \{2, 3, 4\}$. Déterminer

 $A \cup B$, $A \cap B$, $A \setminus B$, $B \setminus A$, $E \setminus A$, $E \setminus B$, $E \setminus (A \cup B)$, $E \setminus (A \cap B)$.

Exercice 2.

Pour $A \subseteq X$, on rappelle que le complément de A dans X est $A^c = X \setminus A$. Soit X un ensemble quelconque, et $A, B \subseteq X$ deux sous-ensembles de X.

- (a) Déterminer \varnothing^c et X^c .
- (b) Montrer que $(A^c)^c = A$.
- (c) Montrer que $(A \cap B)^c = A^c \cup B^c$ et $(A \cup B)^c = A^c \cap B^c$.

Exercice 3.

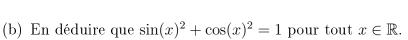
Décrire les ensembles suivants sous la forme $X = \{\text{élément} \mid \text{condition}\}$, et sous la forme $X = \{a, b, c, \dots\}$ (liste d'éléments avec ...).

- (a) L'ensemble des entiers négatifs ou nuls.
- (b) L'ensemble des entiers pairs.
- (c) L'ensemble des entiers impairs.
- (d) L'ensemble des entiers strictement positifs divisibles par 3, sans 12.

Exercice 4.

(a) Démontrer le $Th\acute{e}or\`{e}me$ de Pythagore: Dans un triangle rectangle de côtés a,b et d'hypoténuse c, on a:

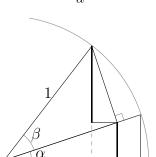
$$a^2 + b^2 = c^2.$$



(c) Montrer que
$$\sin\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$
.

(d) Démontrer la formule d'addition du sinus (dans le cas particulier où $\alpha,\beta>0,\alpha+\beta<\pi/2$):

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta).$$



Indication: On pourra s'inspirer des figures ci-contre.

Exercice 5.

Soient X et Y deux ensembles, et $f \colon X \to Y$ et $g \colon Y \to X$ deux fonctions.

- (a) Si g(f(x)) = x pour tout $x \in X$, montrer que f est injective et g est surjective.
- (b) Trouver deux ensembles X, Y et deux fonctions f, g telles que g(f(x)) = x pour tout $x \in X$, mais où f n'est pas surjective et g n'est pas injective.

Exercice 6.

Trouver le domaine de définition $D = D(f) \subseteq \mathbb{R}$ et l'image $I = \operatorname{Im}(f) \subseteq \mathbb{R}$ des fonctions suivantes. Trouver ensuite un sous-ensemble $A\subseteq D$ tel que la restriction $f: A \to I$ est bijective, et déterminer la réciproque de cette fonction restreinte.

(a)
$$-2x + 1$$
.

(e)
$$1 - x^2$$

(i)
$$\sin(\frac{\pi}{4}\sin(x))$$

(b)
$$x^n \ (n \in \mathbb{N} \text{ impair})$$

(e)
$$1 - x^2$$

(f) $x^2 - 8x + 3$
(g) $\sin(2x)$

(j)
$$\frac{1}{x^2+1}$$

(c)
$$x^n \ (n \in \mathbb{N} \text{ pair})$$

(g)
$$\sin(2x)$$

(k)
$$\sqrt{25-x^2}-1$$

(d)
$$\frac{1}{x}$$

(h)
$$2\tan(x)$$

(l)
$$f(x) = \begin{cases} 1 + \frac{1}{x - 1} & \text{si } x \le 0\\ \sqrt{4 - x^2} & \text{si } 0 < x \le 2. \end{cases}$$

On rappelle que la composée de deux fonctions f, g est la fonction $g \circ f$ définie par $g \circ f(x) = g(f(x))$. De plus, une fonction $f: \mathbb{R} \to \mathbb{R}$ est croissante is $f(x) \leq f(y)$ dès que x < y, et strictement croissante si f(x) < f(y) dès que x < y.

Exercice 7.

Vrai ou faux?

- (a) Il n'existe qu'une seule fonction bijective $f: \mathbb{N} \to \mathbb{N}$.
- (b) Si $f: X \to Y$ et $g: Y \to Z$ sont deux fonctions injectives, leur composée $g \circ f \colon X \to Z$ est injective.
- (c) Si $f: X \to Y$ et $g: Y \to Z$ sont deux fonctions surjectives, leur composée $g \circ f \colon X \to Z$ est surjective.
- (d) Si une fonction $f: \mathbb{R} \to \mathbb{R}$ est croissante, alors elle est injective.
- (e) Si une fonction $f: \mathbb{R} \to \mathbb{R}$ est croissante, alors elle est surjective.
- (f) Si une fonction $f: \mathbb{R} \to \mathbb{R}$ est strictement croissante, alors elle est injective.
- (g) Si une fonction $f: \mathbb{R} \to \mathbb{R}$ est strictement croissante, alors elle est surjective.

^{1.} ou croissante au sens large