27.11.2024

Exercice 1. (Fonctions trigonométriques hyperboliques)

Pour $x \in \mathbb{R}$, on définit les fonctions trigonométriques hyperboliques comme les fonctions trigonométriques mais sans le i, c'est à dire:

$$\sinh(x) = \frac{e^x - e^{-x}}{2}, \qquad \cosh(x) = \frac{e^x + e^{-x}}{2}, \qquad \tanh(x) = \frac{\sinh(x)}{\cosh(x)}.$$

Montrer que :

- (a) $\cosh^2(x) \sinh^2(x) = 1$. (Les points $(\cosh(t), \sinh(t))$ sont donc sur l'hyperbole d'équation $x^2 - y^2 = 1$)
- (b) $\sinh'(x) = \cosh(x)$ et $\cosh'(x) = \sinh(x)$.
- (c) $\sinh \colon \mathbb{R} \to \mathbb{R}$ est bijective, et sa réciproque est $\arcsinh(x) = \log(x + \sqrt{x^2 + 1})$.
- (d) cosh: $[0, +\infty[\to [1, +\infty[$ est bijective, et sa réciproque est $\operatorname{arccosh}(x) = \log(x + \sqrt{x^2 1})$

Exercice 2.

Refaire l'ex 5, série 10 en utilisant la proposition suivante, vue en cours:

Soit $f: [a,b] \to \mathbb{R}$ une fonction continue sur [a,b] et dérivable sur $[a,b] \setminus \{x_0\}$. Si $\lim_{x \to x_0} f'(x) = \ell \in \mathbb{R} \text{ existe, alors } f \text{ est d\'erivable en } x_0 \text{ et } f'(x_0) = \ell.$

Exercice 3.

On considère la fonction exponentielle exp: $\mathbb{R} \to \mathbb{R}$.

- (a) Montrer que $\exp(x) = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$.
- (a) Montrer que $\exp(x) = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)$. (b) Montrer que pour tout polynôme p(x), on a $\lim_{x \to +\infty} \frac{p(x)}{\exp(x)} = 0$. Remarque: Cela montre que exp croît plus vite que tout polynôme.

Exercice 4.

Calculer les limites suivantes (avec BH ou développement limités).

(a)
$$\lim_{x \to 2} \frac{\log(x-1)}{x-2}$$

(d)
$$\lim_{x \to 0} \frac{\tan(x) - \sin(x)}{x - \sin(x)}$$

(g)
$$\lim_{x \to 0} \frac{1 - \cos(x)}{\tan(x)}$$

(b)
$$\lim_{x \to +\infty} x(\tanh(x) - 1)$$

(e)
$$\lim_{x \to 1} \frac{x}{x - 1} - \frac{1}{\log(x)}$$

(a)
$$\lim_{x \to 2} \frac{\log(x-1)}{x-2}$$
 (d) $\lim_{x \to 0} \frac{\tan(x) - \sin(x)}{x - \sin(x)}$ (g) $\lim_{x \to 0} \frac{1 - \cos(x)}{\tan(x)}$ (b) $\lim_{x \to +\infty} x(\tanh(x) - 1)$ (e) $\lim_{x \to 1} \frac{x}{x-1} - \frac{1}{\log(x)}$ (h) $\lim_{x \to \frac{\pi}{2}} x \tan(x) - \frac{\pi}{2\cos(x)}$ (c) $\lim_{x \to 0} (1 + \sin(x))^{\frac{1}{x}}$ (f) $\lim_{x \to 0} x^{\pi x}$

(c)
$$\lim_{x \to 0} (1 + \sin(x))^{\frac{1}{x}}$$

(f)
$$\lim_{x\downarrow 0} x^{\pi x}$$

Exercice 5.

Parmi les 32 phrases suivantes, déterminer lesquelles sont vraies et lesquelles sont

cos(x) =
$$\begin{cases} 1 \\ 1+x \\ 1+2x^2 \\ 1-\frac{1}{2}x^2 \end{cases} + \begin{cases} x\varepsilon(x) \\ x^2\varepsilon(x) \\ x^3\varepsilon(x) \\ x^4\varepsilon(x) \end{cases}$$
 pour une fonction $\varepsilon \colon \mathbb{R} \to \mathbb{R}$ telle que
$$\begin{cases} \varepsilon(x) = 0. \\ \varepsilon(x) = 0 \text{ et } \lim_{x \to 0} \varepsilon(x) = 0. \end{cases}$$

Exercice 6.

Déterminer le développement limité d'ordre n en a=0 des fonctions suivantes:

(a)
$$f(x) = \sin(3x), \quad n = 3$$

(g)
$$f(x) = \sqrt{1 + \sin(x)}, \quad n = 3$$

(b)
$$f(x) = \log(2+x), \quad n = 3$$

(h)
$$f(x) = \frac{3}{(1-x)(1+2x)}$$
, $n=4$

(c)
$$f(x) = \log(\cos(x)), \quad n = 4$$

(d)
$$f(x) = \log(1 + x - 2x^2)$$
, $n = 3$ (i) $f(x) = e^{x^2}$, n quelconque

(e)
$$f(x) = e^{\sin(x)}$$
, $n = 4$
 (j) $f(x) = \frac{x}{9 + x^2}$, n quelconque.

(f)
$$f(x) = \sqrt{1+x}$$
, $n = 3$

Indication: Le (f) mis à part, on peut tout faire sans dériver (à l'aide des DL vus en cours). Pour le (h), on pourra réécrire l'expression sous la forme $\frac{a}{1-x} + \frac{b}{1+2x}$.

Exercice 7.

Déterminer les extremums locaux et globaux (s'ils existent) et les points stationnaires et d'inflexion des fonctions suivantes, et donner les intervalles ou elles sont croissantes/décroissantes et convexes/concaves.

(a)
$$f(x) = x^3 + 5x^2 + 1 \text{ sur } [-6, 1].$$
 (d) $f(x) = (x-1)^2 - 2|2 - x| + 1 \text{ sur }]2, 3[$.

(b)
$$f(x) = x^3 + 5x^2 + 1 \text{ sur }]-6,1[$$
. (e) $f(x) = \frac{x^3}{2(x^2+1)} \text{ sur } \mathbb{R}$

(a)
$$f(x) = x + 5x + 1 \text{ sur } [-6, 1]$$
. (d) $f(x) = (x-1)^2 - 2 | 2 - x |$
(b) $f(x) = x^3 + 5x^2 + 1 \text{ sur }] - 6, 1[$. (e) $f(x) = \frac{x^3}{3x^2 + 1} \text{ sur } \mathbb{R}$. (f) $f(x) = x \log(x) \text{ sur } \mathbb{R}^*_+$.

Exercice 8.

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction. Vrai ou faux?

- (a) Si f est dérivable à gauche et à droite en $a \in \mathbb{R}$, alors f est dérivable en a.
- (b) Si f est dérivable sur $]-\frac{\pi}{2},\frac{\pi}{2}[$, alors f' est continue sur le même intervalle.
- (c) Si f est dérivable sur \mathbb{R} , alors $g(x) = \sqrt{f(x)^2}$ est dérivable sur \mathbb{R} .
- (d) Si f est dérivable en $a \in \mathbb{R}$, il existe $\delta > 0$ tel que f est continue sur $]a \delta, a + \delta[$.
- (e) Si $f(x) = x^2 2x$, alors $(f \circ f)'(1) = 0$.
- (f) Si f est bijective, différentiable sur \mathbb{R} , et si la droite tangente au point (-1,2)du graphe de f a l'équation y = 6x + 8, alors $(f^{-1})'(2) = \frac{1}{6}$.

2

- (g) Si $f: \mathbb{R} \to \mathbb{R}$ est donnée par $f(x) = x + e^x$, alors $(f^{-1})'(1) = 1 + \frac{1}{e}$.
- (h) Si f est dérivable en $x_0 \in \mathbb{R}$, alors $f \circ f$ est aussi dérivable en x_0 .
- (i) Si f est dérivable sur \mathbb{R} et f'(a) = 0, alors $(f \circ f \circ f \circ f)'(a) = 0$.