Analyse I

Série 10

EPFL - Sections SIE/GC/SC

20.11.2024

Exercice 1.

Soient $f, g: D \to \mathbb{R}$ deux fonctions dérivables en $x_0 \in D$.

- (a) Démontrer la règle du produit: $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$.
- (b) En utilisant (a), démontrer la règle du quotient:

$$\left(\frac{f}{g}\right)'(x_0) = \left(\frac{f'g - fg'}{g^2}\right)(x_0).$$

Exercice 2.

Calculer la dérivée des fonctions f suivantes, et donner le domaine de f et f'.

(a)
$$tan(x)$$

(f)
$$(3 + 9 \tan x) \cos(2x)$$

(1)
$$arccos(x)$$

(b)
$$\cot(x) := \frac{\cos(x)}{\sin(x)}$$

(g)
$$\log\left(\frac{x}{\sqrt{x+3}}\right)$$

(m)
$$\arctan(x)$$

(n) $\sqrt{\sin(\sqrt{\sin(x)})}$

(c)
$$\frac{5x+2}{3x^2-1}$$

(h)
$$\frac{2e^x}{x^2 - 1}$$

(o)
$$((2x^4 + e^{-(4x+3)}))^{\frac{3}{5}}$$

(d)
$$\frac{x^2}{\sqrt{1-x^2}}$$

(i)
$$|x|\sin(x)$$

(p)
$$\log(4^{\sin(x)})e^{\cos(4x)}$$

(e)
$$\sin^2(x) \cdot \cos(x^2)$$

(j)
$$|x|^3$$

(k) $\arcsin(x)$

(q)
$$x^x$$

(r)
$$x^{x^x}$$

Exercice 3.

Dans les cas suivants, calculer les dérivées $f^{(n)}$ d'ordre n, pour tout $n \in \mathbb{N}^*$.

- (a) $f(x) = x^k$ (où $k \in \mathbb{Z}$).
- (b) $f(x) = \sin(2x) + 2\cos(x)$.
- (c) $f(x) = \log(x)$.

Exercice 4. (Dérivée logarithmique.)

Si f est dérivable et f(x) > 0, montrer que $f'(x) = f(x) (\log(f(x)))'$. En déduire la dérivée de $f(x) = (x^2 + 1)^2 (x^6 + 2)^3 (x^4 + 3)$.

Exercice 5.

Déterminer $\alpha, \beta \in \mathbb{R}$ pour que la fonction $f \colon \mathbb{R} \to \mathbb{R}$ suivante soit dérivable partout:

$$f(x) = \begin{cases} x^2 - x + 3 & \text{si } x \le 1\\ \alpha x + \beta & \text{si } x > 1. \end{cases}$$

Exercice 6.

Montrer que l'équation $\frac{1}{(x+2)^3} + \frac{1}{(x-4)^5} = 0$ a exactement une solution réelle.

Exercice 7. (Exp et log dans d'autres bases)

Pour a > 0, et $a \neq 1$, on définit les fonctions:

$$\exp_a(x) = \exp(\log(a) \cdot x), \qquad \log_a(x) = \frac{\log(x)}{\log(a)}.$$

Montrer que:

- (a) $\exp_a : \mathbb{R} \to]0, +\infty[$ est bijective, de réciproque $\log_a :]0, +\infty[\to \mathbb{R}.$
- (b) $\exp_a(\frac{p}{q}) = a^{\frac{p}{q}}$ pour tout $\frac{p}{q} \in \mathbb{Q}$, justifiant la définition $a^x = \exp_a(x)$ pour $x \in \mathbb{R}$.
- (c) $(a^x)' = \log(a) \cdot a^x$, et $\log_a'(x) = \frac{1}{\log(a) \cdot x}$.
- (d) a^x est strictement croissante si a > 1 et strictement décroissante si a < 1.
- (e) $\log_a(b^x) = x \cdot \log_a(b)$.
- (f) $\log_b(x) = \frac{\log_a(x)}{\log_a(b)}$ (Changement de base).

Exercice 8. (Théorème des accroissements finis généralisé.)

(a) Soient $f, g: [a, b] \longrightarrow \mathbb{R}$ continues, et dérivables sur]a, b[. On suppose que $g'(x) \neq 0$ pour tout $x \in]a, b[$. Montrer qu'il existe un $u \in]a, b[$ tel que

$$\frac{f'(u)}{g'(u)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Indication: Appliquer le théorème de Rolle à la fonction

$$h(x) = f(x) - \left(f(a) + \frac{f(b) - f(a)}{g(b) - g(a)}(g(x) - g(a))\right).$$

(b) Utiliser le TAF généralisé pour démontrer le TAF.