Polycopié de 2023

Ecole Polytechnique Fédérale de Lausanne

NOTES DE COURS 2023

Analyse I

Olivier Mila

Version provisoire du 20 décembre 2023 Toutes informations non-garanties

Chapitre 0: Prélude

1 Ensembles

Un **ensemble** est une collection d'objets (mathématiques). Exemples:

- 1) $A = \{1, 2, 3\}$. Ensemble contenant les nombres un, deux et trois.
- 2) $\mathbb{N} = \{0, 1, 2, 3, \dots\}$. Ensemble des **nombres naturels**.
- 3) $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, 3, \ldots\}$. Ensemble des **entiers relatifs**.
- 4) $\mathbb{Q}, \mathbb{R}, \mathbb{C}$. Ensembles des **nombres rationnels**, des **nombres réels**, et des **nombres complexes** (revus plus tard).
- 5) Intervalles (revus plus tard) Ex: $[2,5] = \{x \in \mathbb{R} \mid 2 \le x \le 5\} = \text{nombres réels comprisentre 2 et 5 (inclus)}, <math>[2,5] = \{x \in \mathbb{R} \mid 2 < x < 5\}.$
- 6) $B = \{2, 4, 6, \dots\}$. Ensembles des nombres pairs positifs.

Notations:

- $x \in X$ signifie x est élément de X. Ex: $2 \in A$, $-1 \in \mathbb{Z}$, $-4 \notin B$.
- $X \subset Y$, ou $X \subseteq Y$, signifie X est sous-ensemble de Y. Ex: $A \subseteq \mathbb{N}$, $\mathbb{N} \not\subseteq B$.
- $X \setminus Y = \{x \in X \mid x \notin Y\}$, ou X Y, signifie X **privé de** Y. Ex: $A \setminus \{3, 4, 5\} = \{1, 2\}, \ \mathbb{Z} \setminus \mathbb{N} = \{-1, -2, -3, -4, \dots\}, \ \mathbb{N} \setminus \{0\} = \{1, 2, 3, \dots\} = \mathbb{N}^*.$
- $X \times Y = \{(x,y) \mid x \in X, y \in Y\}$ est le **produit cartésien** de X et Y; c'est l'ensemble des **couples** (x,y). Ex: Si $X = \{1,2\}, Y = \{3,4\}$, on a $X \times Y = \{(1,3),(1,4),(2,3),(2,4)\}$. (Attention: $(x,y) \neq (y,x)$. Donc $(3,1) \notin X \times Y$).

2 Fonctions

Une **fonction** est une manière d'assigner des éléments $y \in Y$ à des $x \in X$. Ex: $X = \{1, 2, 3, 4\}, Y = \{1, 8, 12\}$ et f assigne $2 \mapsto 1, 3 \mapsto 8, 4 \mapsto 8$. Le **domaine** est le sous-ensemble $D(f) \subseteq X$ des éléments auxquels un $y \in X$ est assigné, et l'**image** est le sous-ensemble $Im(f) \subseteq Y$ des éléments assignés à au moins un $x \in X$. (Attention: Pas plus d'une flèche partant du même x.)

Notations:

- $f(x) = \text{image de } x \text{ via } f = \text{\'el\'ement } y \in Y \text{ assign\'e\'e \'a } x$. Donc $D(f) = \{x \in X \mid f(x) \text{ est d\'efini}\}, \text{ et}$ $Im(f) = \{y \in Y \mid \underbrace{\exists}_{\text{il existe}} x \in X \text{ tel que } y = f(x)\} = \{f(x) \mid x \in D(f)\}.$
- $f: A \to B$ veut dire D(f) = A et $Im(f) \subseteq B$. $a \mapsto f(a)$

• $f(x) = \dots$ (formule)... sous-entend $f: D \to \mathbb{R}$ avec $D = D(f) \subseteq \mathbb{R}$ le plus $x \mapsto f(x)$ grand possible.

Exemples:

- (i) f(x) = x + 1 veut dire $f: \mathbb{R} \to \mathbb{R}$
- (ii) Si $g: \{1,2,3\} \to \{2,3,4\}$ est tel que g(1) = 2, g(2) = 3, g(3) = 4, alors g est comme f, mais avec des ensembles de départ et d'arrivée plus petits: $g = f|_{\{1,2,3\}}^{\{2,3,4\}}$ (restriction de f à $\{1,2,3\}$ et corestriction de f à $\{2,3,4\}$).
- (iii) $f(x) = \frac{1}{x}$ veut dire $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$. $x \mapsto \frac{1}{x}$

3 Surjectivité et Injectivité

Définition. Une fonction $f: X \to Y$ est

- surjective si $\operatorname{Im}(f) = Y$ (tout $y \in Y$ a au moins une pré-image),
- injective si $f(x_1) = f(x_2) \underset{\text{implique}}{\Longrightarrow} x_1 = x_2$, i.e. dès que $f(x_1) = f(x_2)$, on a forcément $x_1 = x_2$ (tout $y \in Y$ a *au plus* une pré-image),
- bijective si injective et surjective (tout $y \in Y$ a exactement une pré-image).

Si $f \colon X \to Y$ est bijective (et seulement dans ce cas!), on peut l'"inverser":

Définition. Si $f: X \to Y$ est bijective, sa **fonction réciproque** est $f^{-1}: Y \to X$ $y \mapsto f^{-1}(y) = \text{unique } x \in X \text{ tel que } f(x) = y.$

Exemples:

- (i) Exemple visuel (vu en classe).
- (ii) $f: \mathbb{R} \to \mathbb{R}$ est bijective de réciproque $f^{-1}(x) = x 1$ (détails vus en classe). $x \mapsto x + 1$
- (iii) $f: \mathbb{R} \to \mathbb{R}$. Pas surjective: $-3 \notin \mathbb{R} = Y$, car un carré est toujours positif. On la $x \mapsto x^2$ corestreint à $R_{\geq 0} = \{x \in \mathbb{R} \mid x \geq 0\} : g = f|_{\mathbb{R} \geq 0}$. La fonction $g: \mathbb{R} \to \mathbb{R}_{\geq 0}$ est $x \mapsto x^2$ surjective, mais pas injective: g(2) = 4 = g(-2), alors que $2 \neq -2$. On la restreint à $\mathbb{R}_{\geq 0} : h = g|_{\mathbb{R} \geq 0} = f|_{\mathbb{R} \geq 0}^{\mathbb{R} \geq 0}$. La fonction $h: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ est bijective, de réciproque $x \mapsto x^2$

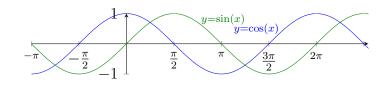
 $h^{-1} \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ (détails et graphes vus en classe). $x \mapsto \sqrt{x}$

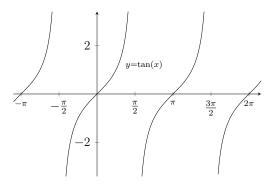
Autres exemples de fonctions 4

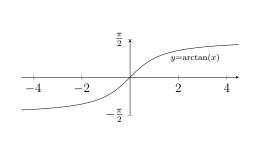
- (i) Polynômes: $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$; les $a_i \in \mathbb{R}$ sont les **coeffi**cients, et n est le degré (si $a_n \neq 0$). Ex: $f(x) = x^3 + 2x - 1, f(x) = x^7, \ldots$ Si n est impair, $f(x) = x^n$ est bijective, et si n est pair, on doit co/restreindre à $h = f|_{\mathbb{R}>0}^{\mathbb{R}\geq 0}$. Dans les deux cas la réciproque est notée $\sqrt[n]{x}$. Si $x\geq 0$, on peut utiliser la notation $x^{1/n} = \sqrt[n]{x}$.
- (ii) Exponentielles: Pour chaque base a >on a l'**exponentielle en base** a, notée $f=\exp_a:\mathbb{R}\to\mathbb{R}$. Si $a \neq 1, f|_{\mathbb{R}>0}$ est $x \mapsto \exp_a(x) = a^x$ bijective; sa réciproque est le logarithme en **base** a, noté $\log_a : \mathbb{R}_{>0} \to \mathbb{R}$. Si a = e = $x \mapsto \log_a(x)$ 2,718... =**nombre d'Euler**, on note $\log_e(x) = -4$

ln(x) = log(x).

(iii) Fonctions trigonométriques: le **sinus** sin: $\mathbb{R} \to \mathbb{R}$ et le cosinus $cos: \mathbb{R} \to \mathbb{R}$ sont définis à l'aide de la fissure ci-contre. On a $\sin(0) = 0, \sin(\frac{\pi}{2}) = 1, \dots$ $D(\sin) = D(\cos) = \mathbb{R}$, et $Im(\sin) = Im(\cos) = [-1, 1]$. La co/restriction $\sin|_{[-\frac{\pi}{2},\frac{\pi}{2}]}^{[-1,1]}$ est bijective, de réciproque - $\arcsin: [-1,1] \to [-\frac{\pi}{2},\frac{\pi}{2}].$ La co/restriction $\cos^{[-1,1]}_{[0,\pi]}$ est bijective, de réciproque arccos: $[-1,1] \rightarrow [0,\pi]$. La tangente est définie comme $tan(x) = \frac{\sin(x)}{\cos(x)}$. On a $D(tan) = \frac{\sin(x)}{\cos(x)}$ $\{x \in \mathbb{R} \mid \cos(x) \neq 0\} = \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi \mid k \in \mathbb{Z}\} \text{ et}$ $\operatorname{Im}(\tan) = \mathbb{R}$. La restriction $\tan \left|_{1-\frac{\pi}{2},\frac{\pi}{2}\right|}$ est bijective, de réciproque arctan: $\mathbb{R} \to]-\frac{\pi}{2},\frac{\pi}{2}[$. Graphes:



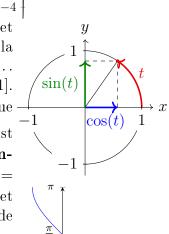




6

4

-2



1

 $y = \arcsin(x)$

 $y = \arccos(x)$

 $y = \log(x)$

Définition. La **composée** (ou **composition**) de deux fonctions $f: A \to B, g: B \to C$ est la fonction $g \circ f: A \to C$

$$a \mapsto g \circ f(a) = g(f(a)).$$

Ex:
$$\sin(x^2) = g \circ f(x) = g(f(x))$$
 avec $f: \mathbb{R} \to \mathbb{R}$ et $g: \mathbb{R} \to \mathbb{R}$ $x \mapsto \sin(x)$.

On remarque que si $f: A \to B$ est bijective, alors $g: B \to A$ est sa réciproque si et seulement si $g \circ f(x) = x$ et $f \circ g(x) = x$.

Chapitre 1: Nombres

1 Entiers et nombres rationnels

- $\mathbb{N} = \{0, 1, 2, \dots\} = \text{nombres naturels. } \mathbb{N}^* = \mathbb{N} \setminus \{0\} = \{1, 2, 3, \dots\}.$
- $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, 3, \ldots\} = \mathbb{N} \cup -\mathbb{N} = \text{entiers relatifs.}$
- $\mathbb{Q} = \{ \frac{a}{b} \mid a \in \mathbb{Z}, b \in \mathbb{Z}, b \neq 0 \}$ = nombres rationnels. (Peut être identifié à $\mathbb{Z} \times \mathbb{Z}^*$ via " $\frac{a}{b} = (a, b)$ ", mais où l'on identifie $\frac{a}{b} = cd$ si ad = bc.

Malgré la quantité de nombres dans \mathbb{Q} , on a:

Proposition 1.1. L'équation $x^2 = 2$ n'a pas de solution $x \in \mathbb{Q}$.

Preuve. Par l'absurde. Supposons qu'il existe une solution $x=\frac{a}{b}$. On peut supposer que soit a, soit b est impair (sinon on peut simplifier la fraction). Alors $x^2=2\Rightarrow (\frac{a}{b})^2=2\Rightarrow a^2=2b^2\Rightarrow a^2$ est pair. Si a était impair, on aurait a=2k+1 pour un $k\in\mathbb{Z}$, et donc $a^2=(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1$ serait aussi impair. Donc a est

forcément pair $\Rightarrow a = 2c$. Il suit $a^2 = (2c)^2 = 2b^2 \Rightarrow 4c^2 = 2b^2 \Rightarrow 2c^2 = b^2 \Rightarrow b^2$ est pair $\Rightarrow b$ est pair (cf même argument que pour a). Donc a et b sont tous les deux pairs: c'est absurde! (On avait supposé que l'un ou l'autre était impair). Il ne peut donc exister de solution $x \in \mathbb{Q}$.

Remarque 1.1. Cela dit, en observant le triangle ci-contre, on s'aperçoit que le côté x est tel que $x^2=2\,!$ Il nous manque donc des nombres...

2 Construction des nombres réels

Idée (de génie): utiliser la relation d'ordre $x \leq y$ sur \mathbb{Q} pour "ajouter" des nombres aux bons endroits.

Définition 1.1. Soit $A \subseteq \mathbb{Q}$ un ensemble non-vide $(A \neq \emptyset)$.

- Un $\frac{\text{majorant}}{\text{minorant}}$ de l'ensemble A est un $x \in \mathbb{Q}$ tel que $\frac{x \geq a}{x \leq a}$ pour tout $a \in A$.
- S'il existe un $\frac{\text{majorant}}{\text{minorant}} x$ de A tel que $x \in A$, alors x est unique et s'appelle le $\frac{\text{maximum}}{\text{minimum}}$ de A.

majoré un majorant

ullet L'ensemble A est **minoré** s'il admet un minorant . **borné** les deux

Exemples:

- Si $A = \{x \in \mathbb{Q} \mid 0 \le x \le 1\}$, alors A admet $2, 14, \frac{3}{2}, 1$ comme majorants et $-3, -\frac{1}{2}, 0$ comme minorants. Il est donc borné, et on a $\max A = 1$ et $\min A = 0$.
- $B = \{x \in \mathbb{Q} \mid 0 < x < 1\}$ admet les mêmes majorants et minorants que A, et est donc borné. En revanche, max B et min B n'existent pas (B n'a pas de majorant/minorant dans B).
- $C = \mathbb{N}$ possède 0 comme minorant, mais pas de majorants. Il n'est donc pas majoré (et pas borné). max C n'existe pas, et min C = 0.

Moralement, B devrait avoir comme "maximum" 1 et "minimum" 0. Cela motive:

Définition 1.2. Soit $A \subseteq \mathbb{Q}$ un ensemble non-vide.

- Le **suprémum** de A est sup $A = \min(\{x \in \mathbb{Q} \mid x \text{ est un majorant de } A\})$.
- L'infimum de A est inf $A = \max(\{x \in \mathbb{Q} \mid x \text{ est un minorant de } A\}).$

Si A n'est pas $\frac{\text{majoré}}{\text{minoré}}$, ou si le $\frac{\text{min}}{\text{max}}$ n'existe pas, alors $\frac{\sup A}{\inf A}$ n'existe pas (par définition).

Remarque 1.2. Avec des mots: $\sup_{i \in A} A$ est le plus $\sup_{i \in A} A$ des $\max_{i \in A}$

De plus, si $\max_{\min A} A$ existe, alors $\sup_{\min A} A = \max_{A} A$

Exemples (On reprend les exemples précédents):

- $\sup A = \max A = 1$, et $\inf A = \min A = 0$.
- ullet sup B=1 même si max B n'existe pas, et inf B=0 même si min B n'existe pas.
- $\inf C = \min C = 0$ et $\sup C$ n'existe pas (il n'y a pas de majorant).

Remarque 1.3. Pour un ensemble borné, si min, max peuvent ne pas exister, on s'attend à ce que inf et sup existent toujours.

Contre-exemple fondamental: $D = \{x \in \mathbb{Q} \mid x^2 \leq 2\}$. L'ensemble D est borné (majoré par $\frac{3}{2}$, car $x^2 \leq 2 \leq \frac{9}{4} = (\frac{3}{2})^2 \Rightarrow x \leq \frac{3}{2}$, et minoré par $-\frac{3}{2}$). En revanche, on a:

Proposition 1.2. Si $x = \sup D$ existe, alors $x^2 = 2$.

Preuve. 1) Supposons par l'absurde que $x^2 < 2$. On choisit un entier $n > \frac{2x+1}{2-x^2}$ et on pose $d = x + \frac{1}{n}$. Alors $d \in D$: en effet, $d \in \mathbb{Q}$ et $d^2 = (x + \frac{1}{n})^2 = x^2 + \frac{2x}{n} + \frac{1}{n^2} \le x^2 + \frac{2x}{n} + \frac{1}{n} = x^2 + \frac{2x+1}{n} \le 2$ (puisque $x^2 + \frac{2x+1}{n} \le 2 \Leftrightarrow \frac{2x+1}{n} \le 2 - x^2 \Leftrightarrow n \ge \frac{2x+1}{2-x^2}$). Donc $d \in D$ et $d = x + \frac{1}{n} > x$. C'est absurde, car x est un majorant de D.

- 2) Supposons par l'absurde que $x^2 > 2$. Alors ... (exercice difficile!) ... Absurde!
- 3) Comme on n'a ni $x^2 < 2$, ni $x^2 > 2$, on a $x^2 = 2$.

Corollaire 1.3. $\sup D$ n'existe pas dans \mathbb{Q} .

Preuve. Il n'y a pas de $x \in \mathbb{Q}$ avec $x^2 = 2$, cf Prop. 1.1.

Cette procédure nous indique où ajouter des nombres!

Construction des nombres réels: \mathbb{R} s'obtient à partir de \mathbb{Q} en ajoutant les sup et les inf de tous les sous-ensembles bornés $A \subseteq \mathbb{Q}$.

3 Propriétés des nombres réels

- (i) \mathbb{R} est un **corps** $(0, 1, +, \cdot)$, inverses, distributivité,...) muni d'un **ordre total** $(x \leq y)$.
- (ii) Les définitions de majoré, minoré, max, min, suprémum, infimum restent les mêmes que pour \mathbb{Q} (remplacer \mathbb{R} par \mathbb{Q} dans les définitions).
- (iii) La procédure de la construction de \mathbb{R} est réussie. En effet, on a:

Théorème 1.4. Si $A \subseteq \mathbb{R}$ est non vide et $\begin{array}{l} major\'e \\ minor\'e \end{array}$, alors $\begin{array}{l} \sup A \in \mathbb{R} \\ \inf A \in \mathbb{R} \end{array}$ existe et est unique.

En fait, si $D = \{x \in \mathbb{R} \mid x^2 \le 2, \text{ alors } \sup D \text{ et inf } D \text{ existent, et sont solutions } de x^2 = 2. Donc <math>\sup D = \sqrt{2}$ et inf $D = -\sqrt{2}$.

Exemple de calcul de de sup / inf: $A = \{3 + \frac{1}{n} \mid n \in \mathbb{N}^*\}$. A est majoré par 3 et minoré par 4, donc borné. Comme $4 \in A$, on a sup $A = \max A = 4$. On va montrer que inf A = 3. C'est bien un minorant, il faut donc montrer que c'est le plus grand. On va montrer qu'aucun x > 3 ne peut être un minorant, en construisant un $a \in A$ tel que a < x. Soit x > 3. On choisit $n \in \mathbb{N}$ tel que $n > \frac{1}{x-3}$, et on pose $a = 3 + \frac{1}{n}$. Alors $a \in A$ et $a = 3 + \frac{1}{n} < x$, puisque $3 + \frac{1}{n} < x \Leftrightarrow \frac{1}{n} < x - 3 \Leftrightarrow n > \frac{1}{x-3}$. Ainsi x n'est pas un minorant, et 3 est donc le plus petit; c'est inf A. Comme $3 \notin A$, min A n'existe pas.

- (iv) Pour $A\subseteq\mathbb{R}$ non-vide et borné, $\max_{\min A}A$ existe si et seulement si $\sup_{\inf A\in A}A\in A$ et dans ce cas, $\max_{\dim A}A=\sup_{\dim A}A$.
- (v) **Théorème 1.5** (Pince à épiler / ε -sup). Soit $A \subseteq \mathbb{R}$ non vide et borné. Alors $s = \sup A$ $t = \inf A$ si et seulement si 1) $a \le s$ pour tout $a \in A$ et 2) pour tout $\varepsilon > 0$, il existe $a \in A$ tel que $s \varepsilon \le a \le s$ $t < a < t + \varepsilon$.
- (vi) Intervalles:

Les 4 de gauches sont bornés, et ont a pour inf et b pour sup.

4 Représentation décimale

Tout $x \in \mathbb{R}$ s'écrit

$$x = \pm \underbrace{d_1 d_2 \dots d_n}_{\text{décimales avant la virgule, en nombre fini}} \underbrace{d_{n+1} d_{n+2} \dots}_{\text{ou}, \text{ décimales après la virgule, en nombre fini ou infini}} \text{ avec } d_i \in \{0, 1, \dots, 9\}.$$

 $x=\pm\underbrace{d_1d_2\dots d_n}_{\substack{\text{décimales avant la virgule, en nombre fini}}}\underbrace{\underbrace{d_{n+1}d_{n+2}\dots}_{\substack{\text{ou },\\ \text{en nombre fini}}}}_{\substack{\text{décimales après la virgule,}\\ \text{en nombre fini ou infini}}}_{\substack{\text{décimales après la virgule,}\\ \text{en nombre fini ou infini}}}_{\substack{\text{décimales après la virgule,}\\ \text{en nombre fini ou infini}}}_{\substack{\text{décimales après la virgule,}\\ \text{en nombre fini ou infini}}}_{\substack{\text{decimales après la virgule,}\\ \text{decimales après la virgule,}\\ \text{en nombre fini ou infini}}}_{\substack{\text{decimales après la virgule,}\\ \text{en nombre fini ou infini}}}_{\substack{\text{decimales après la virgule,}\\ \text{decimales après la virgule,}\\ \text{decimales après la virgule,}}_{\substack{\text{decimales après la virgule,}\\ \text{decimales après la virgule,}\\ \text{decimales après la virgule,}}_{\substack$ semble ne pas se répéter...

Théorème 1.6. Soit $x \in \mathbb{R}$. Alors $x \in \mathbb{Q} \Leftrightarrow x$ a une représentation décimale finie ou périodique.

Idée de preuve. ⇒ Vu en classe. ⇐ Exemple représentation finie:
$$x = 3.745 = \frac{3745}{1000}$$
. Ex. représ. périodique: $x = 41.70\overline{102} \Rightarrow 10^2x = 4170.\overline{102} \Rightarrow 10^210^3 \cdot x = 4170102.\overline{102}$. Donc $10^210^3x - 10^2x = 4170102 - 4170 = y \in \mathbb{Z}$, d'où $x = \frac{y}{10^2(10^3-1)} \in \mathbb{Q}$.

Avec la même idée, on montre que $0.\overline{9} = 1$. Conséquences du théorème:

- Densité de \mathbb{Q} dans \mathbb{R} : Pour tous $x < y \in \mathbb{R}$, il existe $a \in \mathbb{Q}$ tel que x < a < y(explications vues en classe).
- Pour tout $x \in \mathbb{R}$ il existe $a \in \mathbb{Q}$ arbitrairement proche de x. Ex: $x = \sqrt{2}$ $1.414235 \Rightarrow 1; 1.4; 1.41; 1.414; \dots \text{ sont } \in \mathbb{Q} \text{ et s'approchent de } \sqrt{2}.$
- $x = 0, 1010010001... \notin \mathbb{Q}$.
- La représentation décimale de $\sqrt{2}$ est infinie non-périodique.

Autres propriétés / définitions:

- (i) L'ensemble Q est **dénombrable**: on peut lister ses éléments. (Mathématiquement, dénombrable veut dire qu'il existe une fonction bijective $f: \mathbb{N} \to \mathbb{Q}$). Dessin vu en classe.
- (ii) L'ensemble \mathbb{R} est **indénombrable**. Preuve vue en classe.
- (iii) Les nombres **irrationnels** sont: $\mathbb{R} \setminus \mathbb{Q}$.
- (iv) La valeur absolue d'un nombre $x \in \mathbb{R}$ est

$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x \le 0 \end{cases} = \text{distance entre } 0 \text{ et } x.$$

Propriétés: $|x|=0 \Leftrightarrow x=0, |-x|=|x|, \ |x|\geq 0, \ |xy|=|x||y|, \ |x|=\sqrt{x^2},$ $|x+y| \le |x| + |y|$ (inégalité triangulaire).

5 Nombres complexes

Il y a beaucoup de nombres dans \mathbb{R} , on a par exemple une solution de $x^2 = a$ pour tout a > 0. Mais pas de solutions à $x^2 = -1$ (Si $x \in \mathbb{R}$, alors x^2 est toujours positif). Faut-il rajouter des nombres? En rétrospective: SUPER IDÉE!

Construction: On munit l'ensemble $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(a, b) \mid a, b \in \mathbb{R}\}:$

- 1) D'une addition: (a,b) + (c,d) = (a+c,b+d). Interprétation géométrique: c'est l'addition des vecteurs de \mathbb{R}^2 .
- 2) D'une multiplication: $(a,b)\cdot(c,d)=(ac-bd,ad+bc)$. Interprétation géométrique: plus tard! Ex: $(1, 2) \cdot (3, 4) = (-5, 10)$.

Fait important: Cela fait de \mathbb{R}^2 un **corps** (on a $+,\cdot,0=(0,0),1=(1,0)$, des inverses, la distributivité,...)

Notations:

- (i) (a,0)+(b,0)=(a+b,0) et $(a,0)\cdot(b,0)=(ab,0)$. Cela fait donc sens d'**identifier** $\{(x,0) \mid x \in \mathbb{R}\} \text{ avec } \mathbb{R} \text{ (via } (x,0) \leftrightarrow x).$
- (ii) De plus $(a, b) = (a, 0) + (0, b) = a + b \cdot (0, 1)$. Le "nombre" (0, 1) est intéressant: on a $(0,1) \cdot (0,1) = (-1,0) = -1$. On l'appelle **l'unité imaginaire** i = (0,1).

Ainsi i est solution de $x^2 = -1$, et on peut écrire (a, b) = a + b(0, 1) = a + bi.

Définition 1.3. L'ensemble \mathbb{R}^2 muni de ces + et \cdot est le corps des nombres complexes, noté \mathbb{C} .

• Tout nombre complexe $z \in \mathbb{C}$ s'écrit z = a + bi avec $a, b \in \mathbb{R}$. C'est Remarque 1.4. la forme cartésienne de z.

 \bullet On peut "oublier" la définition compliquée de $\cdot,$ et retenir seulement $i^2=-1.$ En effet: $(a+bi)(c+di) = ac + adi + bci + bdi^2 = ad - bc + (ad+bc)i$.

Représentation graphique: Dans le plan \mathbb{R}^2 , on renomme l'axe horizontal "axe réel \mathbb{R} " et l'axe vertical "axe imaginaire" $i\mathbb{R}$. Les nombres complexes sont donc représentés comme des points de \mathbb{R}^2 (détails vus en classe).

Définition 1.4. Soit $z = a + bi \in \mathbb{C}$.

- 1) La partie réelle de z est Re(z) = a. La partie imaginaire de z est Im(z) = b.
- 2) Le **module** (ou valeur absolue) de z est $|z| = \sqrt{a^2 + b^2} \in [0, +\infty[$. C'est la distance entre z et 0 (comme pour |x| dans \mathbb{R}).
- 3) L'argument de z est $\arg(z) = \text{angle entre } z \text{ et l'axe réel, mesuré } \in]-\pi,\pi]$. Pour a, b > 0, on a arg(z) = arctan(b/a), et il existe des formules dans les autres cas.
- 4) Le conjugué complexe de z est $\bar{z} = a bi$,

Propriétés des nombres complexes

- (i) $\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$ et $\operatorname{Im}(z) = \frac{z \overline{z}}{2i}$. En effet, si z = a + bi, alors $\frac{z + \overline{z}}{2} = \frac{a + bi + a bi}{2} = \frac{a + bi + a bi}{2}$ $\frac{2a}{2} = a$, et c'est similaire pour Im(z).
- (ii) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}, \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}, \overline{z_1/z_2} = \overline{z_1}/\overline{z_2}$. (Preuve: Exercices). (iii) $|z|^2 = z\overline{z}$. En effet, $|z|^2 = a^2 + b^2$ et $z\overline{z} = (a + bi)(a bi) = a^2 (bi)^2 = a^2 + b^2$. Conséquence: $|z_1z_2| = |z_1| \cdot |z_2|$. En effet, $|z_1z_2|^2 = z_1z_2\overline{z_1z_2} = z_1\overline{z_1}z_2\overline{z_2} = |z_1|^2|z_2|^2$, et on obtient l'égalité voulue en prenant la racine.
- (iv) **Proposition 1.7** (Inversion). Soit $z \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$. Alors $\frac{1}{z} = \frac{1}{|z|^2}\bar{z}$. Preuve. Si $z' = \frac{1}{|z|^2} \overline{z}$, alors $zz' = \frac{z\overline{z}}{|z|^2} = 1$.

Remarque 1.5. Pour s'en rappeler, on peut "multiplier" par \bar{z} en haut et en bas. Explicitement, si z=a+bi, alors $\frac{1}{z}=\frac{a}{a^2+b^2}+\frac{-b}{a^2+b^2}i$. Exemple: $\frac{1}{2+3i}=\frac{2}{13}-\frac{3}{13}i$ (détails vu en classe).

(v) Si $c \in \mathbb{R}$, alors $\operatorname{Re}(cz) = c \cdot \operatorname{Re}(z)$, $\operatorname{Im}(cz) = c \cdot \operatorname{Im}(z)$, $|cz| = |c| \cdot |z|$, et si c > 0, $\operatorname{arg}(cz) = \operatorname{arg}(z)$. Finalement, $|\overline{z}| = |z|$ et, si $z \notin \mathbb{R}_{<0}$, $\operatorname{arg}(\overline{z}) = -\operatorname{arg}(z)$.

Trois formes des nombres complexes:

- 1) Tout $z \in \mathbb{C}$ s'écrit z = a + bi, avec $a, b \in \mathbb{R}$; c'est la forme cartésienne.
- 2) Si r = |z|, et $\theta = \arg(z)$, alors $\cos(\theta) = \frac{a}{r}$ et $\sin(\theta) = \frac{b}{r}$. Donc tout $z \in \mathbb{C}$ s'écrit $z = a + bi = r(\cos(\theta) + i\sin(\theta))$ avec $r \in \mathbb{R}_+$ et $\theta \in \mathbb{R}$; c'est la **forme polaire**.
- 3) Pour $x \in \mathbb{R}$, on définit: $e^{ix} = \cos(x) + i\sin(x)$. (Justification plus tard!) Avec cette notation, tout $z \in \mathbb{C}$ s'écrit $z = re^{i\theta}$, avec $r \in \mathbb{R}_+$ et $\theta \in \mathbb{R}$; c'est la **forme polaire (exponentielle)**.

Définition 1.5 (Exponentielle complexe). Pour $z = a + bi \in \mathbb{C}$, on définit $e^z = e^a e^{ib} = e^a (\cos(b) + i \sin(b))$.

Remarque 1.6. En forme cartésienne, les additions et soustractions sont faciles, mais les multiplications et divisions demandent des formules plus compliquées. En forme polaire (exp), c'est l'inverse: si $z_1 = re^{i\theta}$ et $z_2 = se^{i\varphi}$, alors $z_1z_2 = (rs)e^{i(\theta-\varphi)}$ et $z_1/z_2 = (r/s)e^{i(\theta-\varphi)}$.

Exemples: Si z = 1 + i, alors $|z| = \sqrt{2}$ et $\arg(z) = \frac{\pi}{4}$, donc $z = \sqrt{2}e^{i\pi/4}$. Si $z = 3e^{i5\pi/6}$, alors $z = -\frac{3\sqrt{3}}{2} + \frac{3}{2}i$ (détails vus en classe).

Conséquences de la définition d'exponentielle complexe:

- Pour $z \in \mathbb{C}$, on a $\overline{e^z} = e^{\overline{z}}$ (preuve en exercice). Donc si $z = re^{i\theta}$, on a $\overline{z} = re^{-i\theta}$.
- Interprétation géométrique de la multiplication complexe: Les modules se multiplient (\Rightarrow agrandissement) et les arguments s'ajoutent (\Rightarrow rotation). Ainsi $i \cdot z = z$ tourné d'un angle de $\pi/2$ (détails vus en classe).
- Formule d'Euler: $e^{i\pi} + 1 = 0$. Donc $e^{i\pi} = -1$.
- Formule de Moivre: $(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$ pour $n \in \mathbb{N}$: Cela suit du fait que $(e^{i\theta})^n = e^{in\theta}$.
- Formules pour $\cos \theta$, $\sin \theta$:

$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}, \quad \sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}.$$

En effet, $\cos(\theta) = \text{Re}(e^{i\theta})$ et $\sin(\theta) = \text{Im}(e^{i\theta})$; ces formules suivent donc des formules pour Re(z) et Im(z) vues plus haut.

7 Calculs dans $\mathbb C$

1) Calcul de $(1-\sqrt{3}i)^{30}$. Très long si on doit développer! Mieux: $1-\sqrt{3}i=2e^{-i\pi/3}$ (dessin vu en classe) et donc $(1-\sqrt{3}i)^{30}=2^{30}e^{-i10\pi}=2^{30}(-1)^{10}=2^{30}$.

2) Racines n-ièmes: On fixe $\omega \in \mathbb{C}^*$ et on cherche $z \in \mathbb{C}$ tel que $z^n = \omega$. En écrivant $z = re^{i\theta}$ et $\omega = se^{i\varphi}$, on a

$$z^n = \omega \iff r^n e^{in\theta} = se^{i\varphi} \iff r^n = s \text{ et } n\theta = \varphi \underbrace{+k \cdot 2\pi}_{\text{Attention!}}, \text{ pour } k \in \mathbb{Z}.$$

D'où $z = \sqrt[n]{s}e^{i\frac{\varphi+k2\pi}{n}}$. Ces solutions sont distinctes pour $k \in \{0, 1, \dots, n-1\}$, mais si k=n, on a $e^{i\frac{\varphi+n2\pi}{n}}=e^{i\frac{\varphi}{n}+2\pi}=e^{i\frac{\varphi}{n}}=e^{i\frac{\varphi+0.2\pi}{n}}$, on retrouve donc la solution k=0. Il y a donc n solutions distinctes à l'équation $z^n=\omega=se^{i\varphi}$, données par:

$$z \in \{\sqrt[n]{s}e^{i\frac{\varphi+k2\pi}{n}} \mid k = 0, 1, 2, \dots, n-1\}.$$

Exemple:

- $z^3 = 1 = 1 \cdot e^{i0}$ possède les trois solutions $1, e^{i\frac{2\pi}{3}}, e^{i\frac{4\pi}{3}}$; elles forment un triangle équilatéral.
- De même, $z^n = 1$ possède n solutions distinctes $1, e^{i\frac{2\pi}{n}}, e^{i\frac{4\pi}{n}}, \dots, e^{i\frac{2\pi(n-1)}{n}}$. $z^3 = i = e^{i\frac{\pi}{2}}$ possède les solutions $e^{i\frac{\pi}{6}} = \frac{\sqrt{3}}{2} + \frac{1}{2}i, e^{i(\frac{\pi}{6} + \frac{2\pi}{3})} = e^{i\frac{5\pi}{6}} = -\frac{\sqrt{3}}{2} + \frac{1}{2}i,$ et $e^{i(\frac{\pi}{6} + \frac{4\pi}{3})} = e^{i\frac{3\pi}{2}} = -i$

Remarque 1.7. Parfois la méthode générale est trop compliquée! Par exemple:

- $z^2 = 1 \Leftrightarrow z = \pm 1$.
- $z^2 = 5 + 12i$: la méthode générale donne $z = \sqrt{13}e^{i(\frac{\arctan(12/5)}{2} + k\pi)}, k = 0, 1.$ Pour exprimer cela en forme cartésienne, on peut poser $z = a + bi \Rightarrow z^2 =$ $a^2 - b^2 + 2abi$ et trouver $a, b \in \mathbb{R}$ tels que $a^2 - b^2 = 5$ et 2ab = 12. On peut également s'apercevoir qu'une des deux solutions vérifie arg(z) = arg(5 +(12i)/2, et se trouve donc sur la bissectrice de l'angle formé par $\omega = 5 + 12i$ et l'axe réel. Donc z est sur la diagonale du losange de sommets $0, \omega, |\omega| = 13$ et $\omega + 13$. Ainsi $\arg(z) = \arg(\omega + 13) = \arg(18 + 12i) = \arg(3 + 2i)$. On remarque alors que |z| doit être égal à $\sqrt{13}$; comme $|3+2i|=\sqrt{13}$, on en déduit les 2 solutions $\pm (3+2i)$.
- 3) Factorisation de polynômes:

Théorème 1.8 (Théorème fondamental de l'algèbre). Tout polynôme P(z) = $a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$, avec $a_i \in \mathbb{C}$, se factorise en

$$P(z) = a_n(z - z_1)(z - z_2) \cdots (z - z_n).$$

Corollaire 1.9. Toute équation polynômiale P(z) = 0 de degré n a n solutions complexes (en comptant les multiplicités).

Exemple: Si $P(z) = az^2 + bz + c$, alors les solutions de P(z) = 0 sont z = $\frac{-b\pm\sqrt{b^2-4ac}}{2c}$, où l'on interprète $\pm\sqrt{b^2-4ac}$ comme les deux solutions complexes de l'équation $\omega^2 = b^2 - 4ac$. Donc si $a, b, c \in \mathbb{R}$ et $b^2 - 4ac \ge 0$, on a des solutions réelles, et si $b^2 - 4ac < 0$, on a $w^2 = b^2 - 4ac = i^2(4ac - b^2) \Rightarrow w = \pm i\sqrt{4ac - b^2}$.

Remarque 1.8. Si les coefficients a_i d'un polynôme P(z) sont réels, alors on peut montrer que pour toute racine $z_0 \in \mathbb{C}$, \bar{z}_0 est aussi une racine de P(z). En groupant les facteurs complexes conjugués comme

$$(z - z_0)(z - \overline{z_0}) = z^2 \underbrace{-2\operatorname{Re}(z_0)}_{\in \mathbb{R}} \cdot z + \underbrace{|z_0|^2}_{\in \mathbb{R}}$$

on peut transformer une décomposition en facteur irréductibles complexes en une décomposition en facteurs irréductibles réels.

Chapitre 2: Suites

1 Définitions et exemples

Définition 2.1. Une suite de nombres réels est un ensemble infini de nombres numérotés $(a_0, a_1, a_2, a_3, \dots)$ avec $a_i \in \mathbb{R}$. Notation:

$$(a_n)_{n\in\mathbb{N}} = (a_n)_{n\geq 0} = (a_n)_n = (a_n) = (a_0, a_1, a_2, \dots).$$

Exemples:

- 1) $a_n = 2n + 1$ $(n \in \mathbb{N})$. Ce sont les nombres impairs. Donc $a_0 = 1, a_1 = 3, a_2 = 5, a_3 = 7, 9, 11, \dots$
- 2) Suite harmonique: $a_n = \frac{1}{n} \ (n \in \mathbb{N}^*)$. Donc $a_1 = 1, a_2 = \frac{1}{2}, a_3 = \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \dots$
- 3) Suite arithmétique: $a_n = bn + c \ (n \in \mathbb{N}, b, c \in \mathbb{R})$. Donc $a_0 = c, a_1 = b + c$, $a_2 = 2b + c, a_3 = 3b + c, \ldots$ Exemples: $b = 2, c = 1 \Rightarrow a_n = 2n + 1$; $b = 1, c = 0 \Rightarrow a_n = n; b = 0 \Rightarrow (a_n) = (c, c, c, c, c, c, c, \ldots)$ (suite constante).
- 4) Suite géométrique: $a_n = ar^n \ (n \in N, a, r \in \mathbb{R}; \text{ le r est la raison de la suite}).$ Donc $a_0 = a, a_1 = ar, a_2 = ar^2, a_3 = ar^3, \ldots$ Exemples: $a = 1, r = 2 \Rightarrow a_n = 2^n$ $(a_0 = 1, 2, 4, 8, 16, \ldots); a = 1, r = \frac{1}{2} \Rightarrow a_n = \frac{1}{2^n} \ (a_0 = 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots); a = 1, r = -1 \Rightarrow a_n = (-1)^n \ (a_0 = 1, -1, 1, -1, 1, \ldots).$

Remarque 2.1. Formellement, une suite est une fonction $f: \mathbb{N} \to \mathbb{R}$; $f(n) = a_n$.

Définition 2.2. Une suite $(a_n)_{n\in\mathbb{N}}$ est

- 1) majorée (resp. minorée, bornée) si l'ensemble A l'est.
- 2) croissante (resp. strictement croissante, décroissante, strictement décroissante) si, pour tout $n \in \mathbb{N}$, on a $a_{n+1} \geq a_n$ (resp. $a_{n+1} > a_n$, $a_{n+1} \leq a_n$, $a_{n+1} < a_n$).
- 3) (strictement) monotone si (strictement) croissante ou (strictement) décroissante.

Proposition 2.1. Une suite (a_n) est bornée \Leftrightarrow il existe $M \in \mathbb{R}$ tel que $|a_n| \leq M$ pour tout $n \in \mathbb{N}$.

Preuve. Exercice. \Box

Exemples:

- 1) $a_n = 2n + 1 \Rightarrow A = \{1, 3, 5, 7, \dots\}$. A est minoré par 1, mais pas majoré, donc pas borné. C'est pareil pour la suite (a_n) (mais en accordant les adjectifs!). De plus, $a_{n+1} = 2(n+1) + 1 = 2n+3 > 2n+1 = a_n$, donc la suite est strictement croissante (et donc aussi strictement monotone).
- 2) Suite harmonique: $a_n = \frac{1}{n} \Rightarrow A = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}$. La suite est donc bornée (majorée par 1, minorée par 0) et strictement décroissante $(a_{n+1} = \frac{1}{n+1} < \frac{1}{n} = a_n)$.

- 3) Suite arithmétique: $a_n = bn + c$. Si b > 0, (a_n) est strictement croissante, minorée par $c = a_0$ mais pas majorée: en effet, si $M \in \mathbb{R}$, alors $a_n > M$ dès que $n > \frac{M-c}{b}$ (car $bn + c > M \Leftrightarrow n > \frac{M-c}{b}$).
- 4) Suite géométrique: $a_n = ar^n$. Si a > 0, la suite est strictement croissante pour r > 1, strictement décroissante pour 0 < r < 1, bornée pour $r \in [-1,1]$, pas majorée pour r > 1 (cf exercices).

Définition 2.3 (Suites définies par récurrence). a_0 = valeur fixée, $a_{n+1} = g(a_n)$ pour $n \in \mathbb{N}$, où $g: \mathbb{R} \to \mathbb{R}$ est une fonction.

Ex: $a_0 = 0$, g(x) = x + 1. Donc $a_1 = g(a_0) = 0 + 1 = 1$, $a_2 = g(a_1) = 1 + 1 = 2$, $a_3 = 3$, $a_4 = 4$... **Affirmation:** $a_n = n$ pour tous $n \in \mathbb{N}$.

Pour démontrer ce genre de résultat, on utilise la:

Définition 2.4 (Preuve par récurrence). Si P(n) est une proposition qui dépend d'un entier n, et si

- 1) Initialisation: $P(n_0)$ est vraie et
- 2) Pas de récurrence: $P(n) \Rightarrow P(n+1)$ pour tous $n \ge n_0$, alors P(n) est vraie pour tout $n \ge n_0$.

Preuve de l'affirmation. On montre $P(n) = "a_n = n"$ par récurrence sur $n \ge 0$.

- 1) Initialisation: $a_0 = 0$, donc P(0) est vraie.
- 2) Pas de récurrence: On a

$$a_{n+1}=g(a_n)=a_n+1$$
 par définition
$$=n+1$$
 par l'hypothèse de récurrence $P(n)$.

Donc $P(n) \Rightarrow P(n+1)$.

On conclut donc que $P(n) = "a_n = n"$ est vraie pour tout $n \ge 0$.

Fausses preuves par récurrence:

1) Pour tout $n \in \mathbb{N}$, on a n = n + 7. En effet, si P(n) = "n = n + 7", alors on a $n + 1 \stackrel{P(n)}{=} (n + 7) + 1 = (n + 1) + 7$, et donc $P(n) \Rightarrow P(n + 1)$, et P(n) est vraie pour tout $n \ge 0$.

Faute: On a oublié l'initialisation: P(0) est fausse, car $0 \neq 7$.

2) Tous les chats sont de la même couleur. Traité en classe.

Définition 2.5 (Preuve par récurrence forte). Si P(n) est une proposition qui dépend d'un entier n, et si

- 1) Initialisation: $P(n_0)$ est vraie et
- 2) Pas de récurrence forte: $\{P(n_0), P(n_0+1), \dots, P(n)\} \Rightarrow P(n+1)$ pour tous $n \geq n_0$,

alors P(n) est vraie pour tout $n \ge n_0$.

Retour aux exemples de suites définies par récurrence:

- 1) $a_0 = 0, a_{n+1} = a_n + 1 \implies a_n = n$. (cf affirmation précédente)
- 2) $a_0 = c, a_{n+1} = a_n + b \implies a_n = bn + c.$ (Exercice)
- 3) $a_0 = a, a_{n+1} = a_n \cdot r \implies a_n = ar^n$. (Exercice)
- 4) $a_0 = 0, a_{n+1} = a_n + 2n + 1$. Attention: ce n'est techniquement pas une suite définie par récurrence au sens de la définition précédente, car la fonction g(x) = x + 2n + 1 dépend de n. On a $a_0 = 0, a_1 = a_0 + 2 \cdot 0 + 1 = 1, a_2 = a_1 + 2 \cdot 1 + 1 = 1 + 3 = 4, a_3 = 4 + 5 = 9$.

Affirmation: $a_n = n^2$.

Preuve. Par récurrence sur $n \ge 0$.

- 1) Initialisation: $a_0 = 0 = 0^2$.
- 2) Pas de récurrence: $a_{n+1} = a_n + 2n + 1 \stackrel{P(n)}{=} n^2 + 2n + 1 = (n+1)^2$. Donc $a_n = n^2$ pour tout $n \ge 0$.
- 5) Suite de Fibonacci: $f_0 = 0$, $f_1 = 1$, et $f_{n+2} = f_{n+1} + f_n$. Attention: pas non plus "définie par récurrence", car $f_{n+1} = g(f_{n+1}, f_n)$. On a $f_2 = 1$, $f_3 = 2$, $f_4 = 3$, $f_5 = 5$, $f_6 = 8, 13, 21, 34, ...$

Affirmation: f_n est croissante et non-majorée.

Preuve. On montre déjà que $f_n \ge n$ si $n \ge 5$, par récurrence forte sur n.

- 1) Initialisation: $f_5 = 5 \ge 5, f_6 = 8 \ge 6.$
- 2) Pas de récurrence: $f_{n+2} = f_{n+1} + f_n \stackrel{P(n+1),P(n)}{\geq} (n+1) + n \geq n+2$. Donc f_n est non bornée, et comme $f_{n+1} = f_n + f_{n-1} \geq f_n$, elle est croissante. \square

En fait, on peut montrer $f_n = \frac{\alpha^n - (-\alpha)^{-n}}{\sqrt{5}}$, où $\alpha = \frac{1+\sqrt{5}}{2}$ est le nombre d'or. (Preuve: algèbre linéaire!)

2 Convergence et limites

Idée: On considère $a_n = \frac{1}{n}(n \in \mathbb{N}^*)$. Alors a_n s'approche de plus en plus de 0. Plus précisément: a_n devient et reste aussi proche de 0 que l'on veut, pourvu qu'on prenne n assez grand.

Définition 2.6. Une suite $(a_n)_n$ converge vers $a \in \mathbb{R}$ si pour tout $\varepsilon > 0$, il existe $N \in \mathbb{N}$ tel que pour tout $n \geq N$, on a $|a_n - a| \leq \varepsilon$. Notation: $a_n \xrightarrow{n \to \infty} a, a_n \longrightarrow a, \lim_{n \to \infty} a_n = a$.

Avec des mots: a_n est et reste arbitrairement proche de a, pour n assez grand.

Définition 2.7. • Si (a_n) converge vers $a \in \mathbb{R}$, alors a est la **limite** de a_n lorsque n tend vers l'infini.

• Si (a_n) ne converge vers aucun $a \in \mathbb{R}$, on dit que la suite **diverge**.

Exemples:

1) Soit
$$a_n = \frac{1}{n}$$
 $(n \in \mathbb{N}^*)$. Alors $a_n \longrightarrow 0 \Leftrightarrow \lim_{n \to \infty} a_n = 0$.

Preuve. Soit $\varepsilon > 0$ arbitraire. On choisit $N \in \mathbb{N}$ tel que $N \geq \frac{1}{\varepsilon}$. Alors dès que $n \geq N$, on a

$$\left|\frac{1}{n} - 0\right| = \frac{1}{n} \le \frac{1}{N} \le \varepsilon, \quad (\operatorname{car} \frac{1}{N} \le \varepsilon \Leftrightarrow N \ge \frac{1}{\varepsilon}).$$

Comme ε était arbitraire, on a montré:

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} \; \text{tel que } \forall n \geq N, \text{ on a } |a_n - 0| \leq \varepsilon.$$

Donc
$$a_n \longrightarrow 0$$
.

- 2) Soit $a_n = (-1)^n$ $(n \in \mathbb{N})$. Alors (a_n) diverge. Preuve. Soit $a \in \mathbb{R}$. Il faut montrer que pour tout $N \in \mathbb{N}$, il existe un $n \geq N$ tel que a_n est loin de a. Si $a \ge 0$, on prend $n \ge N$ impair, de sorte que $a_n = -1$, et donc $|a_n - a| \ge 1$, et si $a \le 0$, on prend $n \ge N$ pair, de sorte que $a_n = 1$, et donc $|a_n - a| \ge 1$.
- 3) Soit $a_n = n \ (n \in \mathbb{N})$. Alors (a_n) diverge. Preuve. Pour $a \in \mathbb{R}$, et $N \in \mathbb{N}$, on choisit $n \geq \max(N, a + 2)$. Ainsi $|a_n - a| = 1$ $|n-a| \geq 2$, donc a_n reste loin de a.
- 4) Soit $a_n = c$ (suite constante). Alors $a_n \longrightarrow c$ (vu en classe).

Proposition 2.2 (Unicité de la limite). $Si(a_n)$ converge, sa limite est unique.

Preuve. Supposons par l'absurde que $a_n \longrightarrow a$ et $a_n \longrightarrow b$ avec $a \neq b$. On pose $\varepsilon = \frac{|a-b|}{10}$. Par définition, il existe N_a tel que $|a_n - a| \le \varepsilon$ dès que $n \ge N_a$, et il existe N_b tel que $|a_n - b| \le \varepsilon$ dès que $n \ge N_b$. Donc pour $n \ge N_a, N_n$, on a

$$|a-b|=|a-a_n+a_n-b|\leq |a_n-a|+|b_n-b|\leq \varepsilon+\varepsilon=2\varepsilon<|a-b|,$$
 donc $|a-b|<|a-b|,$ ce qui est absurde. \Box

Proposition 2.3. Si (a_n) converge, alors (a_n) est bornée.

Idée de la preuve. Vue en classe. (Preuve formelle laissée en exercice)

3 Propriétés des limites

Proposition 2.4 (Propriétés algébriques des limites). $Si(a_n)$ et (b_n) sont deux suites convergentes, alors:

1)
$$\lim_{n \to \infty} (pa_n + qb_n) = p \lim_{n \to \infty} a_n + q \lim_{n \to \infty} b_n$$

2)
$$\lim_{n\to\infty} a_n b_n = \left(\lim_{n\to\infty} a_n\right) \left(\lim_{n\to\infty} b_n\right)$$
,

1)
$$\lim_{n \to \infty} (pa_n + qb_n) = p \lim_{n \to \infty} a_n + q \lim_{n \to \infty} b_n,$$
2)
$$\lim_{n \to \infty} a_n b_n = \left(\lim_{n \to \infty} a_n\right) \left(\lim_{n \to \infty} b_n\right),$$
3)
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} \text{ si } \lim_{n \to \infty} b_n \neq 0.$$

Preuve. Posons $a = \lim_{n \to \infty} a_n$, et $b = \lim_{n \to \infty} b_n$. Soit $\varepsilon > 0$.

1) On choisit N tel que pour $n \ge N$, on a $|a_n - a| \le \frac{\varepsilon}{2|p|}$ et $|b_n - b| \le \frac{\varepsilon}{2|q|}$. Donc, dès que $n \ge N$, on a

$$|pa_n + qb_n - (pa + qb)| = |p(a_n - a) + q(b_n - b)|$$

$$\leq |p| \underbrace{|a_n - a|}_{\leq \varepsilon/2|p|} + |q| \underbrace{|b_n - b|}_{\leq \varepsilon/2|q|} \cdot \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

2) On choisit N tel que pour $n \ge N$, on a $|a_n - a| \le \frac{\varepsilon}{2(1+|b|)}$ et $|b_n - b| \le \frac{\varepsilon}{2|a|}$ et ≤ 1 . Donc, dès que $n \ge N$, on a

$$|a_n b_n - ab| = |a_n b_n - ab_n + ab_n - ab|$$

$$\leq |a_n - a| \underbrace{|b_n|}_{\substack{=|b_n - b + b| \\ \leq |b_n - b| + |b| \\ \leq 1 + |b|}} + |a| \underbrace{|b_n - b|}_{\substack{\leq \varepsilon/2|a|}} \leq \underbrace{|a_n - a|}_{\substack{\epsilon \leq \frac{\varepsilon}{2(1 + |b|)}}} (1 + |b|) + \frac{\varepsilon}{2} \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

3) Exercice.

Comme $\varepsilon > 0$ était arbitraire, 1),2) et 3) en découlent.

Exemples:

1)
$$\lim_{n \to \infty} \frac{2n+3}{3n-5} = \lim_{n \to \infty} \frac{n(2+3/n)}{n(3-5/n)} = \frac{\lim_{n \to \infty} 2+3/n}{\lim_{n \to \infty} 3-5/n} = \frac{2+0}{3-0} = \frac{2}{3}$$
. Attention: $\lim_{n \to \infty} \frac{2n+3}{3n-5} \neq \frac{\lim_{n \to \infty} 2n+3}{\lim_{n \to \infty} 3n-5}$ car ces limites n'existent pas.

- 2) Fausse preuve que 1 = 2 (vu en classe)
- 3) Les suites arithmétiques $a_n = bn + c$ divergent si $b \neq 0$.

 Preuve. Sinon, on aurait $\lim_{n \to \infty} a_n = a$, et donc $\lim_{n \to \infty} n = \lim_{n \to \infty} \frac{a_n c}{b} = \frac{a c}{b}$. Mais on a vu que $\lim_{n \to \infty} n$ n'existe pas!

Proposition 2.5. Si (a_n) et (b_n) convergent et $a_n \leq b_n$ pour n assez grand¹, alors $\lim_{n\to\infty} a_n \leq \lim_{n\to\infty} b_n$.

Preuve. Soit $\varepsilon > 0$ arbitraire, et $N \in \mathbb{N}$ tel que pour tous $n \geq N$, on a $a_n \leq b_n$, $|a_n - a| \leq \frac{\varepsilon}{2}$ et $|b_n - a| \leq \frac{\varepsilon}{2}$. Alors $a \leq a_n + \frac{\varepsilon}{2} \leq b_n + \frac{\varepsilon}{2} \leq b + \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = b + \varepsilon$. On a donc montré que $a \leq b + \varepsilon$, pour tout $\varepsilon > 0$. D'où $a \leq b$.

Théorème 2.6 (Deux Gendarmes / Sandwich). Si $a_n \leq b_n \leq c_n$ pour n assez grand, et si $a_n \longrightarrow \ell$ et $c_n \longrightarrow \ell$, alors $b_n \longrightarrow \ell$.

Preuve. Soit $\varepsilon > 0$ et $N \in \mathbb{N}$ tel que pour tout $n \geq N$, on a $a_n \leq b_n \leq c_n$, $|a_n - \ell| \leq \varepsilon$ et $|c_n - \ell| \leq \varepsilon$. Alors $-\varepsilon \leq a_n - \ell \leq b_n - \ell \leq c_n - \ell \leq \varepsilon$, d'où $-\varepsilon \leq b_n - \ell \leq \varepsilon \Leftrightarrow |b_n - \ell| \leq \varepsilon$.

Exemples plus compliqués:

^{1.} c'est à dire s'il existe $N \in \mathbb{N}$ tel que $a_n \leq b_n$ dès que $n \geq N$

1) Pour tout x > 0, on a $\lim_{x \to 0} \sqrt[n]{x} = 1$.

Preuve. Si $x \ge 1$, on a $0 \le \sqrt[n]{x} - 1 \le \frac{x-1}{n}$. En effet, comme $1 \le x$, on a $\sqrt[n]{1} \le \sqrt[n]{x}$, et donc $\sqrt[n]{x} - 1 \ge 0$. De l'autre côté, on a, par un exercice

$$(y-1)(y^{n-1}+y^{n-2}+\cdots+y+1)=y^n-1$$
 \Rightarrow $y-1=\frac{y^n-1}{y^{n-1}+y^{n-2}+\cdots+y+1}.$

On applique cela à $y = \sqrt[n]{x}$, pour trouver

$$0 \le \sqrt[n]{x} - 1 = \underbrace{\frac{x - 1}{\underbrace{x^{\frac{n-1}{n}}} + \underbrace{x^{\frac{n-2}{n}}}_{>1} + \dots + \underbrace{x^{\frac{1}{n}}}_{>1}}_{>1} + 1} \le \frac{x - 1}{n} \longrightarrow 0$$

Par le théorème des deux gendarmes, on a donc $\sqrt[n]{x} - 1 \longrightarrow 0$, d'où $\sqrt[n]{x} \longrightarrow 1$. Et si $x \le 1$, on pose $y = \frac{1}{x} \ge 1$, et on utilise la partie précédente pour trouver

$$\lim_{n \to \infty} \sqrt[n]{x} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{y}} = \frac{1}{\lim_{n \to \infty} \sqrt[n]{y}} = \frac{1}{1} = 1.$$

2) Suites géométriques $a_n = ar^n$, pour a > 0 et r > 0. La suite converge vers 0 si 0 < r < 1, est constante = a si r = 1, et diverge si r > 1. Preuve. Si r > 1, on pose t = r - 1, et on observe que $r^n - r^{n-1} = r^{n-1}(r-1) = r^{n-1}t > t$. Donc

$$a_n = ar^n = a(\underbrace{r^n - r^{n-1}}_{>t} + \underbrace{r^{n-1} - r^{n-2}}_{>t} + \dots + \underbrace{r^2 - r^1}_{>t} + \underbrace{r^1 - r^0}_{=t} + \underbrace{1}_{\geq 0}) \geq at \cdot n.$$

Comme atn est une suite arithmétique (b=ar>0), elle n'est pas bornée, et donc a_n non plus. Si r<1, soit $\varepsilon>0$. On pose $b_n=\frac{1}{a_n}=\frac{1}{a}s^n$ avec $s=\frac{1}{r}>1$, et donc b_n n'est pas bornée (par la partie précédente). On trouve donc N tel que pour tous $n\geq N$, on a $b_n\geq \frac{1}{\varepsilon}$. Alors, dès que $n\geq N$, $|a_n-0|=a_n=\frac{1}{b_n}\leq \varepsilon$.

3) Soit $a_n = \frac{5^n}{n!}$. Alors $\lim_{n \to \infty} a_n = 0$ (traité en classe). De manière similaire, $\frac{x^n}{n!} \longrightarrow 0$ pour tout $x \in \mathbb{R}$.

4 Limites infinies

Définition 2.8. Une suite (a_n) tend vers $+\infty \atop -\infty$ si pour tout $A \in \mathbb{R}$, il existe $N \in \mathbb{N}$ tel que pour tout $n \geq N$, on a $a_n \geq A \atop a_n \leq A$. Notation: $\lim_{n \to \infty} a_n = \pm \infty$, $a_n \longrightarrow \pm \infty$.

Avec des mots: a_n devient et reste arbitrairement $\frac{\text{grand}}{\text{petit}}$, pour n assez grand. Attention: Si $\lim_{n \to +\infty} a_n = \pm \infty$, la suite (a_n) n'est pas bornée, donc divergente! Exemples:

- $\lim_{n\to\infty} n = +\infty$. Soit $A\in\mathbb{R}$. On choisit $N\geq A$. Alors dès que $n\geq N$, on a $a_n=n\geq N\geq A$. Comme A était arbitraire, on a $a_n\longrightarrow +\infty$.
- $\lim_{n\to\infty} \sqrt[7]{n} = +\infty$. Vu en classe.

Proposition 2.7 (Opérations algébriques sur les limites infinies). Soient (a_n) et (b_n) deux suites.

- 1) $\binom{+\infty+\infty=+\infty}{-\infty-\infty}$ Si $\lim_{n\to\infty} a_n = \frac{+\infty}{-\infty}$ et $\lim_{n\to\infty} b_n = \frac{+\infty}{-\infty}$ et p,q>0, alors on a $\lim_{n\to\infty} (pa_n+qb_n) = \frac{+\infty}{-\infty}$. Attention: $\infty-\infty$ et $0\cdot\infty$ ne sont pas définis.
- 2) $(\pm \infty + c = \pm \infty)$ Si $\lim_{n \to \infty} a_n = \pm \infty$ et (b_n) est bornée, alors $\lim_{n \to \infty} (a_n + b_n) = \pm \infty$.
- 3) (Théorème du gendarme seul / de la tartine) Si $\lim_{n\to\infty} a_n = +\infty \atop -\infty$ et $b_n \ge a_n \atop b_n \le a_n$ pour n assez grand, alors $\lim_{n\to\infty} b_n = +\infty \atop -\infty$.
- 4) $((+\infty) \cdot (\pm \infty) = \pm \infty)$ Si $\lim_{n \to \infty} a_n = +\infty$ et $\lim_{n \to \infty} b_n = \pm \infty$, alors $\lim_{n \to \infty} (a_n b_n) = \pm \infty$.
- 5) $(\frac{c}{\pm \infty} = 0)$ $Si \lim_{n \to \infty} a_n = \pm \infty$ et (b_n) est born'ee, alors $\lim_{n \to \infty} \frac{b_n}{a_n} = 0$. Attention: $\frac{\infty}{\infty}$ et $\frac{0}{0}$ ne sont pas définis.

Preuve. 1)-4) exercice facile. Pour 5) soit $\varepsilon > 0$. Soit M tel que $|b_n| \leq M$ et $N \in \mathbb{N}$ tel que pour tous $n \geq N$, on a $|a_n| \geq A = \frac{M}{\varepsilon}$ (possible car $a_n \longrightarrow \pm \infty$). Alors, pour $n \geq N$, $|\frac{b_n}{a_n} - 0| = \frac{|b_n|}{|a_n|} \leq \frac{M}{|a_n|} \leq \varepsilon$. Comme ε était arbitraire, on a bien $\frac{b_n}{a_n} \longrightarrow 0$.

Formes indéterminées:

- 1) $\infty \infty$. On considère les trois suites $a_n = (n+1)^2 n^2$, $b_n = (n+1) n$, et $c_n = \sqrt{n+1} \sqrt{n}$. En prenant la limite, les trois sont du type $\infty \infty$, mais on a $a_n \longrightarrow \infty$, $b_n \longrightarrow 1$, et $c_n \longrightarrow 0$ (détails vus en classe).
- 2) $\infty \cdot 0$. On considère les trois suites $a_n = n^2 \cdot \frac{1}{n}$, $b_n = n \cdot \frac{1}{n}$, et $c_n = \sqrt{n} \cdot \frac{1}{n}$. En prenant la limite, les trois sont du type $\infty \cdot 0$, mais on a $a_n \longrightarrow \infty$, $b_n \longrightarrow 1$, et $c_n \longrightarrow 0$.
- 3) $\frac{\infty}{\infty}$. On considère $a_n = \frac{n^2+1}{n^k+2}$. Si k = 1, $a_n \longrightarrow \infty$, si k = 2, $a_n \longrightarrow 1$ et si k = 3, $a_n \longrightarrow 0$.
- 4) $\frac{0}{0}$. Prendre l'inverse en haut et en bas dans l'exemple précédent.

5 Limsup et Liminf

Définition 2.9. Soit (a_n) une suite. Alors:

$$\limsup_{n \to \infty} = \lim_{n \to \infty} \sup \{ a_m \mid m \ge n \} \quad \text{et} \quad \liminf_{n \to \infty} = \lim_{n \to \infty} \inf \{ a_m \mid m \ge n \}.$$

Si a_n n'est pas majorée on pose $\limsup = +\infty$ $\liminf = -\infty$

- Remarque 2.2. Pour (a_n) générale, $\lim_{n\to\infty} a_n$ n'existe pas forcément, mais $\liminf_{n\to\infty} a_n$ et $\limsup_{n\to\infty} a_n$ existent toujours! (vu plus tard).
 - On a $\liminf_{n\to\infty} a_n \leq \limsup_{n\to\infty} a_n$, avec égalité si et seulement si $\lim_{n\to\infty} a_n$ existe! Dans ce cas, $\liminf = \lim = \limsup$.

Exemples:

- $a_n = (-1)^n \Rightarrow a_n = 1, -1, 1, -1, 1, \dots$ Donc $A_n = \{a_m \mid m \ge n\} = \text{"tous les } a_m$ après a_n " = $\{-1, 1\}$. Ainsi sup $A_n = 1$ et inf $A_n = -1$, d'où $\limsup_{n \to \infty} a_n = \limsup_{n \to \infty} A_n = 1 \text{ et } \liminf_{n \to \infty} a_n = \liminf_{n \to \infty} A_n = 1.$
- $a_n = \frac{1 (-2)^n}{2^n 1}, n \in \mathbb{N}^* \Rightarrow a_n = 3, -1, \frac{9}{7}, -1, \frac{33}{31}, -1, \dots$ Si n est pair, on a $a_n = \frac{1 2^n}{2^n 1} = -1$, et si n est impair, $a_n = \frac{2^n + 1}{2^n 1} > 1$. Pour lim inf, on observe alors que $A_n = \{a_m \mid m \geq n\} = \{-1, *, -1, *, -1, *, \dots\}$, où * > 1, et donc inf $A_n = -1$, d'où $\liminf_{n \to \infty} a_n = \liminf_{n \to \infty} \inf A_n = -1$. Pour \limsup , on observe que

$$A_n = \{a_m \mid m \ge n\} \subseteq A'_n = \{-1, \frac{2^n + 1}{2^n - 1}, \frac{2^{n+1} + 1}{2^{n+1} - 1}, \frac{2^{n+2} + 1}{2^{n+2} - 1}, \dots\}.$$

Or la suite $\frac{2^n+1}{2^n-1}$ est décroissante: on vérifie que $\frac{2^n+1}{2^n-1} \ge \frac{2^{n+1}+1}{2^{n+1}-1}$. Il suit que sup $A'_n = \frac{2^n+1}{2^n-1}$. Comme $A_n \subseteq A'_n$, on a donc

$$1 \le \sup A_n \le \sup A'_n = \frac{2^n + 1}{2^n - 1} \longrightarrow 1.$$

Par le théorème des deux gendarmes, $\limsup_{n\to\infty} a_n = \lim_{n\to\infty} \sup A_n = 1$.

En résumé: comment calculer lim inf et lim sup?

- Écrire quelques termes de la suite, pour comprendre $A_n = \{a_m \mid m \ge n\}$.
- Trouver une sous-suite convergente.

Définition 2.10. Pour une suite $(a_n)_{n\geq 0}$ et une fonction $f: \mathbb{N} \to \mathbb{N}$ strictement croissante (f(n) < f(n+1)), la **sous-suite** correspondante est $(a_{f(n)})_{n\geq 0}$.

Exemples:

- $a_n = (-1)^n \Rightarrow a_{2n} = (-1)^{2n} = 1$, donc (a_{2n}) est une sous-suite constante = 1, et $a_{2n+1} = (-1)^{2n+1} = -1$, donc (a_{2n+1}) est une sous-suite constante = -1.
- $a_n = \frac{1 (-2)^n}{2^n 1} \Rightarrow a_{2n} = -1$, donc (a_{2n}) est une sous-suite constante = -1, et $a_{2n+1} = \frac{2^{2n+1} + 1}{2^{2n+1} 1}$, donc (a_{2n+1}) est une sous-suite qui converge vers 1.

En fait, on a:

Théorème 2.8. Pour une suite bornée, on a

$$\limsup_{n\to\infty} = \max \left\{ \frac{limites\ de\ sous\text{-}suites}{convergentes} \right\}\ et\ \liminf_{n\to\infty} = \min \left\{ \frac{limites\ de\ sous\text{-}suites}{convergentes} \right\}.$$

6 Critères de convergence

Question: (a_n) converge-t-elle? (Pas: vers quoi)

Théorème 2.9 (Croissante + majorée). Toute suite $croissante (a_{n+1} \ge a_n)$ et $a_{n+1} \le a_n$ et $a_{n+1} \le a_n$ et $a_{n+1} \le a_n$ et $a_{n+1} \le a_n$ et $a_{n+1} \le a_n$

Corollaire 2.10. Toute suite monotone et bornée converge.

Exemple: Pour (a_n) bornée, $s_n = \sup \underbrace{\{a_m \mid m \geq n\}}_{A_n}$ est minorée, et on a $s_{n+1} = \sup A_{n+1} \subseteq A_n$ sup $A_n = s_n$. La suite (s_n) est donc décroissante et minorée $\Rightarrow (s_n)$ converge $\Rightarrow \lim_{n \to \infty} s_n = \limsup_{n \to \infty} a_n$ existe. (Similaire pour $\lim \inf$).

Preuve du théorème. On suppose que (a_n) est croissante et majorée. Soit $A = \{a_n \mid n \in \mathbb{N}\}$ et on pose $s = \sup A$. Par le théorème "pince à épiler", on a 1) $s \geq a$ pour tout $a \in A$, et 2) pour tout $\varepsilon > 0$, il existe $a = a_N \in A$ tel que $s - \varepsilon \leq a_N \leq s$. Donc $\forall \varepsilon > 0$, $\exists N$ tel que $s - \varepsilon \leq a_N \leq s$, et comme (a_n) est croissante, dès que $n \geq N$, on a également $s - \varepsilon \leq a_N \leq s$. Il suit: $\forall \varepsilon > 0$, $\exists N$ tel que $\forall n \geq N$, on a $|a_n - s| \leq \varepsilon$, et donc a_n converge vers s. Le cas décroissante et minorée est similaire $(a_n \text{ converge alors vers inf } A)$.

Exemple important: On considère les suites $a_n = \left(1 + \frac{1}{n}\right)^n$ (pour $n \in \mathbb{N}^*$) et b_n définie

par $b_0 = 1$ et $b_{n+1} = b_n + \frac{1}{(n+1)!}$. Une récurrence facile montre que $b_n = \sum_{k=0}^n \frac{1}{k!}$.

Quelques valeurs sont:

$$a_1=2, a_2=2.25, a_3=2.\overline{370}, \dots$$
 $b_0=1, b_1=2, b_2=2.5, b_3=2.\overline{6}, b_4=2.70\overline{83}, \dots$ On a alors:

- (i) $a_n \leq b_n$ pour tous $n \geq 1$,
- (ii) (b_n) est majorée (donc (a_n) aussi),
- (iii) (a_n) est croissante,
- (iv) (b_n) est croissante.

Preuve. (i) On a

$$a_n = (1 + \frac{1}{n})^n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k} \le \sum_{k=0}^n \frac{1}{k!} = b_n,$$

où la première et dernière égalité suivent de la définition de a_n et b_n , la seconde d'un exercice $(x+y)^n = \dots$ et l'inégalité du fait que

(ii) On a
$$\binom{n}{k} \frac{1}{n^k} = \frac{1}{k!} \frac{n!/(n-k)!}{n^k} = \frac{1}{k!} \underbrace{\frac{n}{n}}_{\leq 1} \underbrace{\frac{n-1}{n}}_{\leq 1} \underbrace{\frac{n-2}{n}}_{\leq 1} \cdots \underbrace{\frac{n-k+1}{n}}_{\leq 1} \leq \frac{1}{k!}.$$

$$\frac{1}{k!} = \frac{1}{k \cdot (k-1) \cdots 3 \cdot 2 \cdot 1} \leq \frac{1}{2 \cdot 2 \cdots 2 \cdot 2} = \frac{1}{2^{k-1}} = 2\frac{1}{2^k}.$$

Ainsi on obtient

$$b_n = \sum_{k=0}^n \frac{1}{k!} \le 2\sum_{k=0}^n \left(\frac{1}{2}\right)^k = 2\frac{1 - (1/2)^{n+1}}{1 - (1/2)} \le 2\frac{1 - 0}{1/2} = 4,$$

où l'égalité du milieu suit de la formule $x^n+x^{n-1}+\cdots+x+1=\frac{1-x^{n+1}}{1-x}$ si $x\neq 1$, démontrée en exercice.

(iii) En utilisant le fait que $\frac{a}{b} \leq \frac{a+1}{b+1}$ si $0 < a \leq b$ (exercice facile!), et en reprenant

l'argument du (i), on remarque que

$$\binom{n}{k} \frac{1}{n^k} = \frac{1}{k!} \frac{n}{n} \cdot \frac{n-1}{n} \cdot \frac{n-2}{n} \cdots \frac{n-k+1}{n}$$

$$\leq \frac{1}{k!} \frac{n+1}{n+1} \cdot \frac{n}{n+1} \cdot \frac{n-1}{n+1} \cdots \frac{n-k+2}{n+1} = \binom{n+1}{k} \frac{1}{(n+1)^k}$$

et on a donc

$$a_n = (1 + \frac{1}{n})^n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k} \le \sum_{k=0}^{n+1} \binom{n+1}{k} \frac{1}{(n+1)^k} = (1 + \frac{1}{n+1})^{n+1} = a_{n+1}$$
(iv) On a simplement $b_{n+1} = b_n + \frac{1}{(n+1)!} \ge b_n$.

Par croissance majorée, (a_n) et (b_n) convergent toutes les deux! En fait, on a $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = e = 2.7182818 \cdots = \text{Nombre d'Euler}.$

Théorème 2.11 (Critère de D'Alembert pour les suites). Soit (a_n) une suite telle que $\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ existe $\in \mathbb{R} \cup \{+\infty\}$. Alors $a_n \longrightarrow 0$ si $\rho < 1$ et (a_n) diverge si $\rho > 1$.

Remarque 2.3. • Attention: le critère ne se prononce pas si $\rho = 1$.

• Version plus générale: $a_n \to 0$ si $\limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$ et la suite (a_n) diverge si $\liminf_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$

Preuve. Si $\rho < 1$, alors $\left| \frac{a_{n+1}}{a_n} \right| \longrightarrow \rho < 1$, on trouve donc un r < 1 tel que $\left| \frac{a_{n+1}}{a_n} \right| \le r$ pour n assez grand, disons $n \ge N$. On a alors

$$0 \le |a_n| = \underbrace{\frac{|a_n|}{|a_{n-1}|}}_{\leqslant r} \underbrace{\frac{|a_{n-1}|}{|a_{n-2}|}}_{\leqslant r} \cdots \underbrace{\frac{|a_{N+1}|}{|a_N|}}_{\leqslant r} |a_N| \le |a_N| r^{n-N} = \underbrace{\frac{|a_N|}{r^N}}_{=a} r^n \longrightarrow 0$$

car cette dernière suite est géométrique avec r < 1. Et si $\rho > 1$, on pose $b_n = \frac{1}{a_n}$, et on a $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|} = \frac{1}{\rho} < 1$. Donc $|b_n| \longrightarrow 0$, et ainsi $|a_n| \longrightarrow \infty \Rightarrow (a_n)$ diverge.

Exemple:
$$a_n = \frac{n^{140}}{2^n}$$
. On a $\left| \frac{a_{n+1}}{a_n} \right| = \frac{(n+1)^{140}/2^{n+1}}{n^{140}/2^n} = \left(\frac{n+1}{n} \right)^{140} \frac{1}{2} \longrightarrow \frac{1}{2} < 1$. Donc $a_n \longrightarrow 0$.

Convergence de suites définies par récurrence: On considère une suite (a_n) définie par $a_0 = a, a_{n+1} = g(a_n)$ pour une fonction $g: \mathbb{R} \to \mathbb{R}$.

Idée générale: Si (a_n) converge, disons $a_n \longrightarrow \ell$, alors pour n grand,

$$\underbrace{a_n}_x \approx \ell \approx a_{n+1} = g(\underbrace{a_n}_x) \quad \Rightarrow \quad \ell \text{ est solution de } x = g(x).$$

Exemples:

- 1) $a_0 = 1, a_{n+1} = \frac{1}{2}a_n 1 = g(x)$ avec $g(x) = \frac{1}{2}x 1$. Solution de x = g(x): $x = \ell = -2$. On a $a_0 = 1, a_1 = \frac{\pi}{1}2, a_3 = -\frac{5}{4}, -\frac{13}{8}, \dots, -1.999\dots$ En effet, (a_n) semble donc converger vers -2.
- 2) $a_0 = 1, a_{n+1} = 3a_n 1$. On trouve $\ell = \frac{1}{2}$ mais a_n semble diverger! (détails vus en classe).
- 3) $a_0 = \frac{1}{2}, a_{n+1} = 3a_n 1 \Rightarrow a_n = \frac{1}{2} \longrightarrow \frac{1}{2}$ (détails vus en classe).

Théorème 2.12 (Récurrences linéaires). Soit (a_n) définie par récurrence: $a_0 = a_0$, $a_{n+1} = g(a_n)$ avec g(x) = qx + b, pour $q, b \in \mathbb{R}$ et $|q| \neq 1$. Soit ℓ la solution de $x = g(x) \Leftrightarrow \ell = \frac{b}{1-q}$. Alors:

- 1) Si $a_0 = \ell$, la suite est constante = ℓ ,
- 2) Si $a_0 \neq \ell$ et |q| < 1, $a_n \longrightarrow \ell$,
- 3) Si $a_0 \neq \ell$ et |q| > 1, (a_n) diverge.

Preuve. 1) $a_0 = \ell \Rightarrow a_1 = g(\ell) = \ell \Rightarrow \cdots \Rightarrow a_n = \ell$.

2) Affirmation: $a_n - \ell = q^n(a_0 - \ell)$.

Preuve. Récurrence sur $n \geq 0$. Init: n = 0, on a $a_0 - \ell = q^0(a_0 - \ell)$. Pas de récurrence: $a_{n+1} - \ell = g(a_n) - g(\ell) = qa_n + b - (q\ell + b) = q(a_n - \ell) \stackrel{H.rec}{=} qq^n(a_0 - \ell) = q^{n+1}(a_0 - \ell)$.

Comme |q| < 1, on a $|a_n - \ell| = |q|^n |a_0 - \ell| \longrightarrow 0$ car c'est une suite géométrique de raison r = |q| < 1.

3) Comme au 3), $a_n - \ell = q^n(a_0 - \ell)$ donc $|a_n - \ell| = |a_0 - \ell||q|^n$ est une suite géométrique de raison r > 1, donc $|a_n - \ell| \longrightarrow \infty$. Or si (a_n) convergeait, a_n serait bornée (disons $|a_n| \le M$), et on aurait $|a_n - \ell| \le |a_n| + |\ell| \le M + |\ell|$, en contradiction avec ce qui précède.

Illustration visuelle du théorème: vue en classe.

Exemple non linéaire: $a_0 = 1$, $a_{n+1} = 5 + \frac{6}{a_n} = g(a_n)$ avec $g(x) = 5 + \frac{6}{x}$.

- 1) Candidats pour ℓ : solutions de x=g(x). On résout $x=5+\frac{6}{x} \Leftrightarrow x^2-5x-6=0 \Leftrightarrow x=\ell=6$ ou -1.
- 2) Exclure tous les cas sauf 1. On observe que $a_0 = 1, a_1 = 5 + 6, a_2 = 5 + \frac{6}{11}, a_3 = 5 + *, a_4 = 5 + *...$

Affirmation: $a_n \ge 5$ dès que $n \ge 1$.

Preuve. Récurrence! Init: OK. Pas de récurrence: $a_{n+1} = 5 + \underbrace{6/a_n}_{>0} \geq 5$.

Donc $\ell = -1$ est impossible.

3) (Essayer de) montrer par récurrence que $|a_n - \ell| \le ... \Rightarrow |a_n - \ell| \longrightarrow 0$, ou que $|a_n - \ell| \ge ... \Rightarrow (a_n)$ diverge.

Affirmation: Pour tout $n \ge 0$, on a $|a_n - 6| \le \frac{1}{5^n} |a_0 - 6|$.

Preuve. Init: n = 0: $|a_0 - 6| = \frac{1}{50}|a_0 - 6|$. Pas de récurrence: On a

$$|a_{n+1} - 6| = |g(a_n) - 6| = \left|\frac{6}{a_n} - 1\right| = \frac{|a_n - 6|}{|a_n|} \le \frac{1}{5}|a_n - 6| \stackrel{H.rec}{\le} \frac{1}{5}\frac{1}{5^n}|a_0 - 6|.$$

Ainsi $|a_n - 6| \le \frac{1}{5^n} |a_0 - 6| \longrightarrow 0$ (suite géométrique de raison $r = \frac{1}{5} < 1$), d'où $a_n \longrightarrow 6$.

Critère de Cauchy:

Définition 2.11. Une suite (a_n) est **de Cauchy** si $\forall \varepsilon > 0, \exists N \in \mathbb{N}$ tel que $\forall m, n \geq N$, on a $|a_m - a_n| \leq \varepsilon$.

Avec des mots: ses termes deviennent arbitrairement proches les uns des autres, lorsque les indices sont assez grands.

Théorème 2.13 (Convergente \Leftrightarrow de Cauchy). Une suite (a_n) converge si et seulement si elle est de Cauchy.

Exemple: Pour b < c, on définit la suite a_n par $a_0 = b$, $a_1 = c$ et $a_{n+2} = \frac{a_{n+1} + a_n}{2}$. Soit alors $\varepsilon > 0$, et soit N tel que $2^N \ge \frac{c-b}{\varepsilon}$. On remarque (image vue en cours) que dès que $m, n \ge N$, a_m et a_n appartiennent au même intervalle de longueur $\frac{c-b}{2^N}$. Ainsi

$$|a_m - a_n| \le \frac{c - b}{2^N} \le \varepsilon \quad (\text{car } 2^N \ge \frac{c - b}{\varepsilon}).$$

Donc (a_n) est de Cauchy $\Rightarrow (a_n)$ converge!

Pour démontrer le critère de Cauchy, on a besoin de:

Théorème 2.14 (Bolzano-Weierstrass). Toute suite bornée possède une sous-suite convergente.

Rappel: Une **sous-suite** d'une suite (a_n) est une suite de la forme $(a_{f(n)})$ pour une fonction $f: \mathbb{N} \to \mathbb{N}$ strictement croissante (f(n) < f(n+1)).

Exemple: $a_n = (-1)^n$ est une suite bornée, mais divergente (elle ne converge pas). En revanche les sous-suites $a_{2n} = (-1)^{2n} = 1$ et $a_{2n+1} = -1$ sont constantes, donc convergentes!

Preuve du théorème de Bolzano-Weierstrass. Comme (a_n) est bornée, il existe M>0 tel que $|a_n| \leq M \Leftrightarrow a_n \in [-M,M]$ pour tout n. On sépare [-M,M] en $I_1 = [-M,0]$ et $J_1 = [0,M]$, et on remarque que soit I_1 soit J_1 contient a_n pour une infinité de n; disons J_1 . On choisit f(1) tel que $a_{f(1)} \in J_1$. On sépare alors J_1 en deux intervalles I_2, J_2 , et à nouveau, soit I_2 , soit J_2 contient a_n pour une infinité de n; disons J_2 . On choisit alors f(2) tel que f(2) > f(1) et $a_{f(2)} \in J_2$. On continue ainsi et on trouve une fonction strictement croissante f(n) telle que $a_{f(n)}$ se trouve dans un intervalle J_n de taille de plus en plus petite.

Si on note $J_n = [b_n, c_n]$, on remarque alors que (b_n) est une suite croissante et majorée, que (c_n) est décroissante et minorée, et que (b_n) et (c_n) convergent vers la même limite ℓ par construction. Comme $b_n \leq a_{f(n)} \leq c_n$, on a $a_{f(n)} \longrightarrow \ell$ par le théorème des deux gendarmes.

Preuve du critère de Cauchy. Pour \Rightarrow , soit (a_n) une suite telle que $a_n \longrightarrow a$; on doit montrer que (a_n) est de Cauchy. Soit $\varepsilon > 0$, et N tel que pour tout $n \geq N$, on a $|a_n - a| \leq \frac{\varepsilon}{2}$. Alors, dès que $m, n \geq N$, on a

$$|a_m - a_n| = |a_m - a + a - a_n| \le |a_m - a| + |a_n - a| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \le \varepsilon.$$

Comme ε était arbitraire, cela montre que (a_n) est de Cauchy.

Pour \Leftarrow , on commence par montrer que la suite est bornée. Soit $\varepsilon = 1$ et N tel que pour tous $m, n \geq N$, on a $|a_m - a_n| \leq \varepsilon = 1$. Alors, $a_n \in [a_N - 1, a_N + 1]$ dès que $n \geq N$, et ainsi

$$|a_n| \le M = \max\{|a_0|, |a_1|, \dots, |a_{N-1}|, |a_N| + 1\},\$$

 (a_n) est donc bornée. Par le théorème de Bolzano-Weierstrass, il existe une sous suite $a_{f(n)}$ qui converge, disons vers a. Soit alors $\varepsilon > 0$, N tel que $\forall m, n \geq N$, on a $|a_m - a_n| \leq \frac{\varepsilon}{2}$ et n' tel que $|a_{f(n')} - a| \leq \frac{\varepsilon}{2}$ et $m = f(n') \geq N$. Alors dès que $n \geq N$ on a

$$|a_n - a| = |a_n - a_m + a_{f(n')} - a| \le |a_n - a_m| + |a_{f(n')} - a| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \le \varepsilon.$$

Comme ε était arbitraire, cela montre que $a_n \longrightarrow a$.

Chapitre 3: Séries

1 Définition et exemples

Rappel de notation: $\sum_{k=0}^{n} a_k = a_0 + a_1 + a_2 + \dots + a_n.$

Définition 3.1. Soit $(a_k)_{k\in\mathbb{N}}$ une suite.

- La série de terme général (a_k) est $\sum_{k=0}^{\infty} a_k \stackrel{\text{def}}{=} \lim_{n \to \infty} \sum_{k=0}^{n} a_k$.
- $S_n = \sum_{k=0}^n a_k$ est la *n*-ième somme partielle. On a donc $\sum_{k=0}^\infty a_k = \lim_{n \to \infty} S_n$.
- La série $\sum_{k=0}^{\infty} a_k$ converge si la suite $(S_n)_{n\geq 0}$ converge $\Leftrightarrow \lim_{n\to\infty} S_n$ existe $\in \mathbb{R}$. Elle diverge si elle ne converge pas.

Exemples:

1) $\sum_{k=0}^{\infty} \frac{1}{2^k}$. Le terme général est $a_k = \frac{1}{2^k}$, et la n-ième somme partielle est $S_n = \sum_{k=0}^n \frac{1}{2^k}$.

Cette série converge: En effet

$$S_n = \sum_{k=0}^n \left(\frac{1}{2}\right)^k = \left(\frac{1}{2}\right)^n + \left(\frac{1}{2}\right)^{n-1} + \dots + \left(\frac{1}{2}\right) + 1 = \frac{1 - \left(\frac{1}{2}\right)^{n+1}}{1 - \frac{1}{2}} = 2\left(1 - \left(\frac{1}{2}\right)^{n+1}\right) \longrightarrow 2.$$

où l'on a utilisé l'exercice $x^n+x^{n-1}+\cdots+x+1=\frac{1-x^{n+1}}{1-x}$ si $x\neq 1$. Ainsi $\lim_{n\to\infty}S_n=2$ et donc $\sum_{k=0}^\infty\frac1{2^k}=2$.

- 2) Série géométrique: $\sum_{k=0}^{\infty} r^k$, pour $r \in \mathbb{R}$. Cette série converge si |r| < 1 et diverge si $|r| \ge 1$ (Exercice).
- 3) La série $\sum_{k=0}^{\infty} 1$, de terme $a_k = 1$, et somme partielle $S_n = \sum_{k=0}^{n} 1 = n+1$, diverge:

Polycopié de 2025

On a $\lim_{n\to\infty} S_n = \lim_{n\to\infty} n+1 = +\infty \notin \mathbb{R}$. Même chose pour la série $\sum_{n\to\infty}^{\infty} (-1)^k$ de terme $a_k = (-1)^k$: La suite des sommes partielles (S_n) diverge, donc la série aussi.

Proposition 3.1 (Série convergente \Rightarrow terme \longrightarrow 0). Si la série $\sum_{k=0}^{\infty} a_k$ converge, alors

$$\lim_{k \to \infty} a_k = 0.$$

Preuve. $\sum_{k=0}^{\infty} a_k \text{ converge} \Leftrightarrow (S_n) \text{ converge} \Leftrightarrow (S_n) \text{ est de Cauchy. Donc}$ $|S_n - S_{n-1}| \longrightarrow 0 \quad \Rightarrow \quad \left|\sum_{k=0}^{n} a_k - \sum_{k=0}^{n-1} a_k\right| = |a_n| \longrightarrow 0.$

$$|S_n - S_{n-1}| \longrightarrow 0 \quad \Rightarrow \quad \left| \sum_{k=0}^n a_k - \sum_{k=0}^{n-1} a_k \right| = |a_n| \longrightarrow 0.$$

Attention: L'autre direction ← n'est pas vraie en général!

4) **Série harmonique:** $\sum_{k=1}^{\infty} \frac{1}{k}$. Le terme général est $a_k = \frac{1}{k}$. On a $a_k \longrightarrow 0$, et pourtant cette série diverge!

Preuve formelle. On a, pour tout $m \in \mathbb{N}$,

$$|S_{2^{m+1}} - S_{2^m}| = \sum_{k=2^{m+1}}^{2^{m+1}} \frac{1}{k} \ge \sum_{k=2^{m+1}}^{2^{m+1}} \frac{1}{2^{m+1}} = \frac{1}{2^{m+1}} \left(2^{m+1} - 2^m\right) = \frac{2^m}{2^{m+1}} (2-1) = \frac{1}{2}.$$

Donc (S_n) n'est pas de Cauchy $\Rightarrow (S_n)$ (et donc aussi la série) divergent.

Critères de convergence pour les séries $\mathbf{2}$

Suite des exemples:

5) **Série harmonique alternée:** $\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$. Cette série converge (vers $-\log(2)$, cf plus tard). Pour cela on a besoin de:

Proposition 3.2 (Critère de Leibnitz pour les séries alternées). Si

- 1) $|a_{k+1}| \leq |a_k|$ (pour k assez grand),
- 2) $\operatorname{signe}(a_{k+1}) = -\operatorname{signe}(a_k)$ (les signes alternent),
- 3) $\lim_{k \to \infty} a_k = 0,$

alors $\sum a_k$ converge.

Idée de la preuve. Si m > n, $a_{n+1} \ge 0$ et m - n est pair, alors

$$S_m - S_n = \underbrace{a_{n+1} + \overbrace{a_{n+2} + \underbrace{a_{n+3} + \underbrace{a_{n+4} + a_{n+5}}}_{\geq 0} + \cdots + \underbrace{a_{m-2} + \underbrace{a_{m-1} + a_m}_{\geq 0}}_{\geq 0}}_{\geq 0}$$

où les ≥ 0 et ≤ 0 proviennent du fait que les termes sont de plus en plus petits en valeur absolue, et que les signes alternent. Ainsi, $0 \leq S_m - S_n \leq a_{n+1}$, et en traitant les autres cas $(a_{n+1} \leq 0, m-n \text{ impair})$, on trouve

$$0 \le |S_m - S_n| \le |a_{n+1}| \longrightarrow 0.$$

Il suit que (S_n) est de Cauchy, donc elle converge (et la série aussi).

Retour à l'exemple 5: La série $\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$ est de terme général $a_k = \frac{(-1)^k}{k}$. On a

- 1) $|a_{k+1}| = \frac{1}{k+1} \le \frac{1}{k} = |a_k|,$ 2) $\operatorname{signe}(a_{k+1}) = -\operatorname{signe}(a_k),$
- 3) $\lim_{k\to\infty} |a_k| = \lim_{k\to\infty} \frac{1}{k} = 0$. Donc la série converge.
- 6) La série $\sum_{k=1}^{\infty} \frac{1}{k^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{25} + \cdots$ converge. (Et vaut ... $\frac{\pi^2}{6}$!).

Preuve. En séparant les termes pairs et impairs, on trouve

$$S_n \le S_{2n+1} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \dots + \frac{1}{(2n)^2} + \frac{1}{(2n+1)^2}$$

$$= 1 + \sum_{k=1}^{n} \frac{1}{(2k)^2} + \sum_{k=1}^{n} \frac{1}{(2k+1)^2} \le 1 + 2\sum_{k=1}^{n} \frac{1}{(2k)^2} = 1 + \frac{2}{4} \sum_{k=1}^{n} \frac{1}{k^2}$$

$$\le 1 + \frac{1}{2} S_n.$$

Ainsi, on a $S_n \leq 1 + \frac{1}{2}S_n \Rightarrow \frac{1}{2}S_n \leq 1 \Rightarrow S_n \leq 2$. La suite (S_n) est donc majorée et croissante, donc elle converge (tout comme la série).

Que dire alors des séries $\sum_{k=1}^{\infty} \frac{1}{k^3}, \sum_{k=1}^{\infty} \frac{1}{k^4}, \dots$?

Proposition 3.3 (Critère de comparaison, terme ≥ 0). Soient $(a_k), (b_k)$ deux suites telles que $0 \le a_k \le b_k$ (pour k assez grand). Alors

- 1) $\sum_{k=0}^{\infty} b_k \ converge \Rightarrow \sum_{k=0}^{\infty} a_k \ converge.$
- 2) $\sum_{k=0}^{\infty} a_k \ diverge \Rightarrow \sum_{k=0}^{\infty} b_k \ diverge.$

Preuve. On pose $S_n^a = \sum_{k=0}^n a_k$ et $S_n^b = \sum_{k=0}^n b_k$.

- 1) (S_n^a) est croissante, et $S_n^a \leq S_n^b$ qui converge \Rightarrow bornée. Donc S_n^a converge, par croissance majorée.
- 2) (S_n^a) est croissante et divergente, donc pas bornée, d'où $S_n^a \longrightarrow +\infty$. Ainsi $S_n^b \longrightarrow$ $+\infty$ par le théorème du gendarme seul.

Polycopié de 2023

Conséquence: $\sum_{k=1}^{\infty} \frac{1}{k^3}$ converge par comparaison. En effet, $0 \le \frac{1}{k^3} \le \frac{1}{k^2}$ et la série $\sum_{k=1}^{\infty}\frac{1}{k^2}$ converge. En fait pour $p\in\mathbb{R}$, la série $\sum_{k=1}^{\infty}\frac{1}{k^p}$ converge si p>1 et diverge si $p \leq 1$ (Exercice).

Définition 3.2. Une série $\sum_{k=0}^{\infty} a_k$ est absolument convergente si la série $\sum_{k=0}^{\infty} |a_k|$ converge.

Proposition 3.4. Toute série absolument convergente est convergente.

Preuve. Soit $\sum_{k=0}^{\infty} a_k$ une série absolument convergente. On note S_n ses sommes partielles, et S_n^{abs} les sommes partielles de $\sum_{k=0}^{\infty} |a_k|$. Alors,

$$|S_m - S_n| = \left| \sum_{k=n+1}^m a_k \right| \le \sum_{k=n+1}^m |a_k| = |S_m^{abs} - S_n^{abs}| \longrightarrow 0$$

car (S_m^{abs}) converge, et est donc de Cauchy. Donc (S_n) est aussi de Cauchy, et converge.

Remarque 3.1. • Si $a_k \ge 0$, alors $\sum_{k=0}^{\infty} a_k$ est convergente \Leftrightarrow absolument convergente. • $\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$ est convergente, mais pas absolument convergente: $\sum_{k=1}^{\infty} \left| \frac{(-1)^k}{k} \right| = \sum_{k=1}^{\infty} \frac{1}{k}$ diverge (série harmonique).

Deux autres critères:

Proposition 3.5 (Critère de d'Alembert pour les séries). Soit (a_k) une suite telle que $ho = \lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right|$ existe dans \mathbb{R} . Alors $\sum_{k=0}^{\infty} a_k$ converge absolument (donc converge) si $\rho < 1$ et diverge si $\rho > 1$.

• Attention: le critère ne se prononce pas si $\rho = 1$.

• Version plus générale: La série converge absolument si $\limsup_{k\to\infty}\left|\frac{a_{k+1}}{a_k}\right|<1$ et diverge si $\liminf_{k\to\infty}\left|\frac{a_{k+1}}{a_k}\right|>1$

Proposition 3.6 (Critère de Cauchy / de la racine). Soit (a_k) une suite telle que $\sigma = \lim_{k \to \infty} \sqrt[k]{|a_k|}$ existe dans \mathbb{R} . Alors $\sum_{k = 0} a_k$ converge absolument (donc converge) si $\sigma < 1$ et diverge si $\sigma > 1$.

Remarque 3.3. • Attention: le critère ne se prononce pas si $\sigma = 1$. • Version plus générale: On remplace σ par $\sigma = \limsup \sqrt[k]{|a_k|}$.

Preuve de d'Alembert. Si $\rho > 1$, la suite (a_k) diverge (critère de d'Alembert pour les suites), donc $a_k \not\longrightarrow 0$, et la série diverge. Si $\rho < 1$, on a $|a_k| \le ar^k$ avec r < 1 (cf preuve du critère de d'Alembert pour les suites). Donc

$$\sum_{k=0}^{\infty} |a_k| \le a \sum_{k=0}^{\infty} r^k = a \frac{1}{1-r} \quad \Rightarrow \quad \text{convergence absolue (par comparaison)}. \quad \Box$$

Preuve de Cauchy. Si $\sigma > 1$, alors $\sqrt[k]{|a_k|} \ge 1$ pour k assez grand. D'où $|a_k| \ge 1$ et $a_k \not\longrightarrow 0$, donc la série diverge. Si $\sigma < 1$, alors $\sqrt[k]{|a_k|} \le s < 1$ pour k assez grand. D'où $|a_k| \le s^k$ et

$$\sum_{k=0}^{\infty} |a_k| \le \sum_{k=0}^{\infty} s^k = \frac{1}{1-s} \quad \Rightarrow \quad \text{convergence absolue (par comparaison)}. \qquad \Box$$

3 Séries avec paramètre

Ce sont des séries où le terme général $a_k = f_k(x)$ dépend d'un paramètre $x \in \mathbb{R}$. La convergence dépend donc aussi de $x \in \mathbb{R}$! Exemples:

1) $\sum_{k=0}^{\infty} \frac{k^2}{x^k}$ (pour $x \in \mathbb{R}^*$). Le terme général est $a_k = \frac{k^2}{x^k}$. On utilise le critère de d'Alembert:

$$\rho = \lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = \lim_{k \to \infty} \frac{(k+1)^2}{|x|^{k+1}} \frac{|x|^k}{k^2} = \lim_{k \to \infty} \left(\frac{k+1}{k} \right)^2 \lim_{k \to \infty} \frac{|x|^k}{|x|^{k+1}} = \frac{1}{|x|}.$$

Donc la série converge absolument si $\rho < 1 \Leftrightarrow |x| > 1$ et diverge si $\rho > 1 \Leftrightarrow |x| < 1$. Et si $|x| = 1 \Leftrightarrow x = \pm 1$? On vérifie les deux cas individuellement:

Si
$$x = 1$$
, on a $\sum_{k=0}^{\infty} \frac{k^2}{1^k} = \sum_{k=0}^{\infty} k^2$ diverge, car $k^2 \not\longrightarrow 0$, et si $x = -1$, on a

$$\sum_{k=0}^{\infty} \frac{k^2}{(-1)^k} = \sum_{k=0}^{\infty} (-1)^k k^2 \text{ diverge, car } (-1)^k k^2 \not\longrightarrow 0. \text{ En résumé, la série converge} \\ \Leftrightarrow |x| > 1.$$

Définition 3.3. Le domaine de convergence d'une série à paramètre x est

$$D = \{ x \in \mathbb{R} \mid \text{ la série converge} \}.$$

On a donc
$$D\left(\sum_{k=0}^{\infty} \frac{k^2}{x^k}\right) = \{x \in \mathbb{R} \mid |x| > 1\} =]-\infty, -1[\cup]1, +\infty[.$$

2) $\sum_{k=0}^{\infty} \frac{x^k}{k!}$ (pour $x \in \mathbb{R}$). Si x = 0, la série vaut $0^0 + 0 = 1$ (et converge donc). Si $x \neq 0$, on utilise d'Alembert:

$$\rho = \lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = \lim_{k \to \infty} \frac{|x|^{k+1}}{(k+1)!} \frac{k!}{|x|^k} = \lim_{k \to \infty} \frac{|x|}{k+1} = 0.$$

La série converge donc absolument pour tout $x \in \mathbb{R}$, et donc $D = \mathbb{R}$. On verra plus tard que $\sum_{k=0}^{\infty} \frac{x^k}{k!} = e^x$.

Définition 3.4. Une **série entière** est une série de la forme $\sum_{k=1}^{\infty} b_k(x-a)^k$, pour $x \in \mathbb{R}$. Le nombre a est le **centre** de la série.

Exemple: $\sum_{k=0}^{\infty} \frac{x^k}{k!} = \sum_{k=0}^{\infty} \frac{1}{k!} (x-0)^k$ est une série entière de centre 0. Par contre, $\sum_{k=0}^{\infty} \frac{k^2}{x^k}$ n'en est pas une.

Convergence des séries entières: On applique le critère de Cauchy généralisé (le terme est $a_k = b_k(x-a)^k$) pour trouver

$$\sigma = \limsup_{k \to \infty} \sqrt[k]{|a_k|} = \limsup_{k \to \infty} \sqrt[k]{|b_k|} \cdot |x - a|.$$

Ainsi, la série entière converge absolument si

$$\sigma = \limsup_{k \to \infty} \sqrt[k]{|b_k|} \cdot |x - a| < 1 \Leftrightarrow |x - a| < \frac{1}{\limsup_{k \to \infty} \sqrt[k]{|b_k|}} \stackrel{\text{def}}{=} r$$

et diverge si |x - a| > r.

Définition 3.5. Pour une série entière $\sum_{k=0}^{\infty} b_k (x-a)^k$, le nombre $r = \frac{1}{\limsup \sqrt[k]{|b_k|}}$ s'appelle le rayon de convergence de la série.

• On a $r = \frac{1}{\lim_{k \to \infty} \sqrt[k]{|b_k|}} = \lim_{k \to \infty} |b_k|^{-1/k}$ si ces limites existent. Remarque 3.4.

 \bullet La série converge absolument si $|x-a| < r \Leftrightarrow x \in \]a-r,a+r[,$ et diverge si |x-a| > r. Ce r est donc l'unique nombre tel que

$$D\left(\sum_{k=0}^{\infty}b_k(x-a)^k\right)=\left]a-r,a+r\right[\quad \cup \quad \text{ éventuellement } \{a-r\} \text{ et/ou } \{a+r\}.$$

Exemple: $\sum_{k=1}^{\infty} \frac{(x-3)^k}{k \cdot 2^k}$. C'est une série entière avec $b_k = \frac{1}{k \cdot 2^k}$. On calcule

$$r = \lim_{k \to \infty} |b_k|^{-1/k} = \lim_{k \to \infty} (k2^k)^{1/k} = \lim_{k \to \infty} \sqrt[k]{k} \cdot 2 = 2$$

(ou l'on a utilisé le fait que $\lim_{k\to\infty} \sqrt[k]{k} = 1$, vu en exercices). Donc la série converge absolument si $|x-3| < 2 \Leftrightarrow x \in]1,5[$ et diverge si |x-3| > 2. Ainsi, $D \supseteq]1,5[$, et il faut encore vérifier les cas x=1 et x=5. Pour x=5, on trouve $\sum_{k=0}^{\infty} \frac{(5-3)^k}{k \cdot 2^k} = \sum_{k=0}^{\infty} \frac{1}{k}$

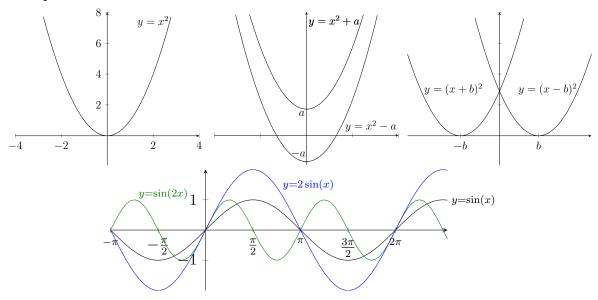
qui diverge (série harmonique), et pour x=1, on a $\sum_{k=1}^{\infty} \frac{(1-3)^k}{k \cdot 2^k} = \sum_{k=1}^{\infty} \frac{(-1)^k}{k}$ qui converge (série harmonique alternée). Donc D = [1, 5].

Remarque 3.5. Le cas $r = +\infty$ est aussi possible, lorsque la série converge pour tout $x \in \mathbb{R} =]-\infty, \infty[.$

Chapitre 4: Fonctions

1 Rappels

Fonction réelle = $f: D \to \mathbb{R}$ où $D \subseteq \mathbb{R}$. $D = D(f) = \text{domaine} = \{x \mid f(x) \text{ est défini}\}$, Im(f) = image = f(D). Le graphe d'une fonction est $\{(x,y) \in \mathbb{R}^2 \mid y = f(x)\}$. Exemples:



Propriétés: Soit $f: D \to \mathbb{R}$ une fonction réelle.

- 1) f est **croissante** (resp. strictement croissante, décroissante, strictement décroissante) sur D si pour tous $x_1, x_2 \in D$ tels que $x_1 < x_2$, on a $f(x_1) \le f(x_2)$ (resp. $f(x_1) < f(x_2)$, $f(x_1) \ge f(x_2)$, $f(x_1) > f(x_2)$). f est monotone (resp. strictement monotone) dur D si elle est croissante ou décroissante (resp. strictement croissante ou strictement décroissante) sur D.
- 2) f est **paire** (resp. impaire) si D est symétrique en 0 (i.e. $x \in D \Rightarrow -x \in D$) et f(-x) = f(x) (resp. f(-x) = -f(x)). Exemple: x^2 est paire, x^3 est impaire.
- 3) f est T-périodique pour un T > 0 si f(x + T) = f(x) pour tout $x \in D$. La **période fondamentale** est le plus petit T tel que f soit T-périodique (s'il existe). Exemple: $\sin(x)$ et $\tan(x)$ sont 2π -périodiques, mais $\tan(x)$ est aussi π -périodique. Les périodes fondamentales sont 2π pour sin et π pour tan.
- 4) f est **majorée** (resp. minorée, bornée) sur $A \subseteq D$ si l'ensemble $f(A) = \{f(x) \mid x \in A\} \subseteq \mathbb{R}$ est majoré (resp. minoré, borné). On a

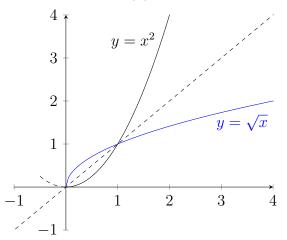
$$\sup_{x \in A} f(x) = \sup_{x \in A} f(A), \quad \inf_{x \in A} f(x) = \inf_{x \in A} f(A)$$

et

$$\max_{x \in A} f(x) = \max f(A), \quad \min_{x \in A} f(x) = \min f(A)$$

 $\max_{x\in A}f(x)=\max f(A),\quad \min_{x\in A}f(x)=\min f(A)$ lorsque ces quantités existent. Ex: $f(x)=(x-1)^2+2,\ A=\]-1,4[$. On a $\inf_{x \in A} f(x) = 2 = \min_{x \in A} f(x), \sup_{x \in A} f(x) = 11, \max_{x \in A} f(x) \text{ n'existe pas.}$

 $x \in A$ $x \in$ a au moins (resp. au plus, exactement) une pré-image $x \in X$ tel que y = f(x). Si f est bijective, sa réciproque est la fonction $f^{-1}: Y \to X$ définie par $f^{-1}(y) =$ unique $x \in X$ tel que f(x) = y. On a donc $y = f(x) \Leftrightarrow x = f^{-1}(y)$; il suit que son graphe s'obtient par symétrie de f(x) en la droite y=x. Exemple:

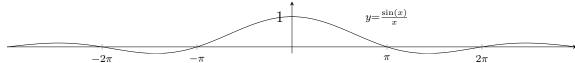


6) La **composée** de deux fonctions $f\colon X\to Y$ et $g\colon Y\to Z$ est la fonction . Exemple: $f(x) = \frac{1}{\sqrt[3]{x^2 + 1}}$ est la composée $f_1 \circ$ $f_2 \circ f_3 \circ f_4(x)$ avec $f_4(x) = x^2$, $f_3(x) = x + 1$, $f_2(x) = \sqrt[3]{x}$, $f_1(x) = \frac{1}{x}$.

Remarque 4.1. g est la réciproque de $f \Leftrightarrow f \circ g(x) = x$ et $g \circ f(x) = x$.

Limites de fonctions

Exemple: $f(x) = \frac{\sin(x)}{x}$. On a $D(f) = \mathbb{R}^* = \mathbb{R} \setminus \{0\}$. Que se passe-t-il en 0 ? Rien! En effet: $0 \notin D$. Par contre on dirait que $f(x) \longrightarrow 1$ lorsque $x \to 0$. Graphe:



Idée: Formaliser ça. On aimerait dire $\lim_{x\to 0} f(x) = \ell$. Ingrédients:

- 1) f(x) doit être définie "un peu autour" de x_0 , et
- 2) f doit s'approcher de ℓ lorsque x s'approche de x_0 .

Définition 4.1. Une fonction $f: D \to \mathbb{R}$ est **définie au voisinage** de $x_0 \in \mathbb{R}$ si $]x_0 - d, x_0[\cup]x_0, x_0 + d[\subseteq D(f)$ pour un d > 0.

Exemple: $\frac{\sin(x)}{x}$ est définie au voisinage de 0 (on peut choisir n'importe quel d > 0), même si elle n'est pas définie en 0!

Définition 4.2. Soit $x_0 \in \mathbb{R}$ et $f: D \to \mathbb{R}$ définie au voisinage de x_0 . Alors f admet $\ell \in \mathbb{R}$ pour limite lorsque x tend vers x_0 , noté

$$\lim_{x \to x_0} f(x) = \ell \quad \text{ou} \quad f(x) \stackrel{x \to x_0}{\longrightarrow} \ell,$$

si $\forall \varepsilon > 0 \,\exists \delta > 0$ tel que $\forall x \in D \setminus \{x_0\}$ on a $|x - x_0| \leq \delta \Rightarrow |f(x) - \ell| \leq \varepsilon$.

Avec des mots: f(x) est arbitrairement proche de ℓ dès que x est assez proche de x_0 (mais $\neq x_0$). Comparaison avec les suites: $a_n \longrightarrow a$ si a_n est arbitrairement proche de ℓ dès que n est assez grand (donc assez proche de l'infini).

Remarque 4.2. • On va montrer plus tard que $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$.

• Pour $\lim_{x\to x_0} f(x)$, on ne regarde jamais $f(x_0)$, mais seulement f(x) pour x proche de x_0 . Exemple:

g(x) =
$$\begin{cases} \frac{\sin(x)}{x} & \text{si } x \neq 0 \\ 132 & \text{si } x = 0 \end{cases} \Rightarrow \lim_{x \to 0} g(x) \stackrel{x \neq 0}{=} \lim_{x \to 0} \frac{\sin(x)}{x} = 1,$$

malgré le fait que $g(0) = 132 \neq 1$.

 $\bullet \lim_{x \to -1} \sqrt{x}$ n'a pas de sens: \sqrt{x} n'est pas défini au voisinage de -1.

Exemple: Soit f(x) = 5x - 1, et $x_0 = 2$. Montrons "à la main" que $\lim_{x \to 2} f(x) = 9$.

- 1) $D(f) = \mathbb{R}$, donc f est bien définie au voisinage de 2.
- 2) Soit $\varepsilon > 0$. On doit trouver $\delta > 0$ tel que, dès que $|x-2| \le \delta$ (et $x \ne 2$), on a $|f(x)-9| \le \varepsilon$. On pose $\delta = \frac{\varepsilon}{5}$. Alors, pour $x \ne 2$ tel que $|x-2| \le \delta$, on a

$$|f(x) - 9| = |5x - 10| = 5|x - 2| \le 5\delta \le \varepsilon \quad \text{car } \delta = \frac{\varepsilon}{5}.$$

Comme $\varepsilon > 0$ était arbitraire, on a montré que pour tout $\varepsilon > 0$, il existe un $\delta(=\varepsilon/5)$ tel que si $x \neq 2$ et $|x-2| \leq \delta$, on a $|f(x)-9| \leq \varepsilon$. Donc $\lim_{x\to 2} f(x) = 9$.

Heureusement, les suites viennent en aide pour simplifier les calculs:

Théorème 4.1 (Limites de fonctions et suites). Soit $f: D \to \mathbb{R}$ définie au voisinage de $x_0 \in \mathbb{R}$. Alors $\lim_{x \to x_0} f(x) = \ell \Leftrightarrow \lim_{n \to \infty} f(a_n) = \ell$ pour **toute** suite $(a_n) \subseteq D(f) \setminus \{x_0\}$ telle que $\lim_{n \to \infty} a_n = x_0$.

Idée: $a_n \longrightarrow x_0 =$ manière de s'approcher de x_0 . Donc $f(x) \longrightarrow \ell$ si $f(a_n) \longrightarrow \ell$ pour toute les façons de s'approcher de x_0 .

Preuve. Pour \Rightarrow , supposons que $\lim_{x\to x_0} f(x) = \ell$. Soit $(a_n) \subseteq D(f) \setminus \{x_0\}$ telle que $\lim_{n\to\infty} a_n = x_0$. On doit montrer: $\lim_{n\to\infty} f(a_n) = \ell$. Soit $\varepsilon > 0$.

- 1) $\exists \delta > 0$ tel que $|x x_0| \le \delta \Rightarrow |f(x) \ell| \le \varepsilon$ (def de $\lim_{x \to x_0} f(x) = \ell$).
- 2) $\exists N \text{ tel que } \forall n \geq N, \text{ on a } |a_n x_0| \leq \delta. \text{ (def de } \lim_{n \to \infty} a_n = x_0).$

Donc dès que $n \geq N$, on a (en posant $x = a_n$): $|f(a_n) - \ell| = |f(x) - \ell| \leq \varepsilon$, car $|x - x_0| = |a_n - x_0| \leq \delta$. Ainsi, $\lim_{n \to \infty} f(a_n) = \ell$.

Pour \Leftarrow , supposons par l'absurde que l'on n'ait pas $\lim_{x\to x_0} f(x) = \ell \Leftrightarrow \exists \varepsilon > 0$ tel que $\forall \delta > 0$, $\exists x \in D \setminus \{x_0\}$ avec $|x - x_0| \le \delta$ et $|f(x) - \ell| \ge \varepsilon$. Pour chaque $n \in \mathbb{N}^*$, on pose $\delta = \frac{1}{n}$ et on trouve donc a_n tel que $|a_n - x_0| \le \frac{1}{n}$ mais $|f(a_n) - \ell| \ge \varepsilon$. On a donc une suite $(a_n) \subseteq D \setminus \{x_0\}$ avec $0 \le |a_n - x_0| \le \frac{1}{n}$. Ainsi $a_n \longrightarrow x_0$, et donc par hypothèse, $\lim_{n\to\infty} f(a_n) = \ell$. Or $|f(a_n) - \ell| \ge \varepsilon > 0$ pour tout n, ce qui est absurde.

Attention: "Toute suite" est important!

Corollaire 4.2. Si

- $\exists (a_n) \subseteq D \setminus \{x_0\}$ tel que $a_n \longrightarrow x_0$ mais $\lim_{n \to \infty} f(a_n)$ n'existe pas, ou
- $\exists (a_n), (b_n) \subseteq D \setminus \{x_0\}$ tel que $a_n \longrightarrow x_0$ et $b_n \longrightarrow x_0$ mais $\lim_{n \to \infty} f(a_n) \neq \lim_{n \to \infty} f(b_n)$, alors $\lim_{x \to x_0} f(x)$ n'existe pas.

Exemple: $f(x) = \cos(\frac{1}{x})$. On a $D = \mathbb{R} \setminus \{0\}$, donc f est définie au voisinage de 0. On pose $a_n = \frac{1}{2n\pi}$ et $b_n = \frac{1}{(2n+1)\pi}$, de sorte que $a_n \longrightarrow 0$ et $b_n \longrightarrow 0$. Mais $\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} \cos(2\pi n) = 1$ et $\lim_{n \to \infty} f(b_n) = \lim_{n \to \infty} \cos(2\pi n + \pi) = -1$. Donc $\lim_{x \to x_0} f(x)$ n'existe pas. (Autre suite vue en cours.)

Propriétés des limites de fonctions. Soit $x_0 \in \mathbb{R}$ et $f, g: D \to \mathbb{R}$ deux fonctions définies au voisinage de x_0 et telles que $\lim_{x \to x_0} f(x)$ et $\lim_{x \to x_0} g(x)$ existent. Alors

- 1) Pour tous $p, q \in \mathbb{R}$, on a $\lim_{x \to x_0} pf(x) + qg(x) = p \lim_{x \to x_0} f(x) + q \lim_{x \to x_0} g(x)$.
- 2) $\lim_{x \to x_0} f(x)g(x) = \left(\lim_{x \to x_0} f(x)\right) \left(\lim_{x \to x_0} g(x)\right).$
- 3) Si $\lim_{x \to x_0} g(x) \neq 0$, alors $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}$.
- 4) Si $f(x) \le g(x)$ au voisinage de x_0 , alors $\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$.
- 5) Si $h: D \to \mathbb{R}$ est tel que $f(x) \le h(x) \le g(x)$ au voisinage de x_0 et que $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \ell$, alors $\lim_{x \to x_0} h(x) = \ell$.

Preuve. Utiliser les suites (point 1) fait en cours).

Remarque 4.3. En utilisant les suites, on peut également montrer que $\lim_{x\to x_0} f(x) = \ell_1$ et $\lim_{x\to x_0} f(x) = \ell_2$ alors $\ell_1 = \ell_2$ (unicité de la limite).

3 Calculs de limites

- 0) $\lim_{x\to u} c = c$, $\lim_{x\to u} x = u$. En effet, si f(x) = c et g(x) = x, alors pour toute suite $a_n \longrightarrow u$, on a $f(a_n) = c \longrightarrow c$ et $g(a_n) = a_n \longrightarrow u$. Donc $\lim_{x\to u} f(x) = c$ et $\lim_{x\to u} g(x) = u$.
- 1) Polynômes: $\lim_{x\to u} x^2 = \left(\lim_{x\to u} x\right)^2 = u^2$ par le produit des limites. Par récurrence, on trouve $\lim_{x\to u} x^n = u^n$, et en utilisant la linéarité, on voit que si $P(x) = a_n x^n + \cdots + a_1 x + a_0$, alors $\lim_{x\to u} P(x) = P(u)$.
- 2) Fonctions rationnelles: $f(x) = \frac{P(x)}{Q(x)}$ avec P, Q des polynômes. Si $Q(u) \neq 0$, on a $\lim_{x \to u} Q(x) = Q(u) \neq 0$, et on peut appliquer la propriété du quotient des limites pour trouver $\lim_{x \to u} f(x) = \frac{\lim_{x \to u} P(x)}{\lim_{x \to u} Q(x)} = \frac{P(u)}{Q(u)}$. Exemple: $\lim_{x \to 2} \frac{x 1}{3x^2 + 4} = \frac{1}{16}$.
- 3) $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$ et $\lim_{x\to 0} \cos(x) = 1$. En calculant les aires des figures colorées ci-contre, on trouve que $\frac{\sin(x)}{2} \le \frac{x}{2} \le \frac{\tan(x)}{2}$. En divisant par x/2, on trouve $\frac{\sin(x)}{x} \le 1 \le \frac{\sin(x)}{x} \frac{1}{\cos(x)}$. En multipliant l'inégalité de droite par $\cos(x)$, on trouve $\cos(x) \le \frac{\sin(x)}{x}$. Finalement, comme $\cos(x) \in [0,1]$, on a $\cos(x) \le \cos^2(x) = 1 \sin^2(x) \le 1 x^2$. On obtient alors la chaine d'inégalités $1-x^2 \le \cos(x) \le \frac{\sin(x)}{x} \le 1$, ce qui montre que $\lim_{x\to 0} \frac{\sin(x)}{x} = 1 = \lim_{x\to 0} \cos(x)$ par le théorème des deux gendarmes.

Remarque 4.4. Cette dernière chaine d'inégalités est vraie pour $0 < x < \pi/2$, donc aussi pour $-\pi/2 < x < 0$ car ce sont des fonctions paires.

Proposition 4.3 (Limites de composées). Soient $f: A \to B$ et $g: B \to \mathbb{R}$ telles que 1) $\lim_{x\to a} f(x) = b$, 2) $\lim_{x\to b} g(x) = c$ et 3) $f(x) \neq b$ au voisinage de a. Alors $\lim_{x\to a} g(f(x)) = \lim_{y\to b} g(y) = c$.

Preuve. Soit $\varepsilon > 0$. On choisit $\delta_1 > 0$ tel que $|g(y) - c| \le \varepsilon$ dès que $y \ne b$ et $|y - b| \le \delta_1$, et $\delta > 0$ tel que $f(x) \ne b$ et $|f(x) - b| \le \delta_1$ dès que $x \ne a$ et $|x - a| \le \delta$. Alors, pour $|x - a| \le \delta$, on a $|g(f(x)) - c| = |g(y) - c| \le \varepsilon$, où l'on a posé y = f(x) dans la première égalité, et où l'inégalité suit du fait que $y = f(x) \ne b$ et $|y - b| = |f(x) - b| \le \delta_1$. \square

Exemples:

•
$$\lim_{x \to 1} \cos(x^{12} - 1) = \lim_{x \to 1} g(f(x))$$
 où $g(x) = \cos(x)$ et $f(x) = x^{12} - 1$. On a 1) $\lim_{x \to 1} f(x) = \lim_{x \to 1} (x^{12} - 1) = 0$, 2) $\lim_{x \to 0} g(x) = \lim_{x \to 0} \cos(x) = 1$, et 3) $x^{12} - 1 \neq 0$ dès

que $x \neq \pm 1$, donc $x^{12} - 1 \neq 0$ au voisinage de 1. Ainsi $\lim_{x \to 1} \cos(x^{12} - 1) \stackrel{y = x^{12} - 1}{=} \lim_{y \to 0} \cos(y) = 1$.

•
$$\lim_{x \to 0} \frac{1 - \cos^2(x)}{3x^2 + \sin^2(x)} = \lim_{x \to 0} \frac{\sin^2(x)/x^2}{(3x^2 + \sin^2(x)/x^2)} = \frac{\left(\frac{\sin(x)}{x}\right)^2}{3 + \left(\frac{\sin(x)}{x}\right)^2} = \lim_{y \to 1} \frac{y}{3 + y} = \frac{1}{4}$$
, où

l'on a fait le changement de variables $y = \left(\frac{\sin(x)}{x}\right)^2$; on a $y \to 1$ lorsque $x \to 0$.

• Attention: La condition 3) est importante (dans la proposition). Exemple vu en classe.

Proposition 4.4 (Limites de réciproques). Soit $f: [a,b] \to \mathbb{R}$ strictement monotone. Soit $u \in [a,b]$ et v = f(u). Alors $f: [a,b] \to \operatorname{Im}(f)$ est bijective, et si $f^{-1}: \operatorname{Im}(f) \to [a,b]$ est définie au voisinage de v, on a $\lim_{x \to v} f^{-1}(x) = f^{-1}(v) = u$.

Idée de la preuve. Vue en classe.

Corollaire 4.5. Pour tout $n \in \mathbb{N}$, et $v \geq 0$, on $a \lim_{x \to v} \sqrt[n]{x} = \sqrt[n]{v}$.

Preuve. On considère $f(x) = x^n$ qui est strictement croissante sur [0, a] pour tout $a \in \mathbb{R}$. Ainsi, $\lim_{x \to v} f^{-1}(x) = f^{-1}(v) = \sqrt[n]{v}$ pour tout $v \ge 0$.

4 Limites à gauche/droite, limites (vers l')infini(es)

Idée: On généralise $\lim_{x \to u} f(x) = \ell$ en 1) $\lim_{x \downarrow u}$ et $\lim_{x \uparrow u}$, 2) $\lim_{x \to \pm \infty}$ et 3) $\lim f(x) = \pm \infty$.

Définition 4.3. Soit $f: D \to \mathbb{R}$ définie au voisinage $\begin{aligned} $\hat{\mathbf{a}}$ gauche <math>\hat{\mathbf{a}}$ droite \\ $\hat{\mathbf{d}}$ droite \\ $\hat{\mathbf{d}}$ droite de <math>u \in \mathbb{R}$ (c'est $\hat{\mathbf{a}}$ direction denote <math>u \in \mathbb{R}$ pour limite $\hat{\mathbf{a}}$ gauche (resp. $\hat{\mathbf{a}}$ droite) lorsque $u \in \mathbb{R}$ pour limite $u \in \mathbb{R}$ pour limite $u \in \mathbb{R}$ gauche (resp. $u \in \mathbb{R}$ droite) lorsque $u \in \mathbb{R}$ tend vers $u \in \mathbb{R}$ definie au voisinage $u \in \mathbb{R}$ pour limite $u \in \mathbb{R}$ gauche (resp. $u \in \mathbb{R}$ droite) $u \in \mathbb{R}$ definite $u \in \mathbb{R}$ pour limite $u \in \mathbb{R}$ droite $u \in \mathbb{R}$ definite $u \in \mathbb{R}$ pour limite $u \in \mathbb{R}$ droite $u \in \mathbb{R}$ definite $u \in \mathbb{R}$ pour limite $u \in \mathbb{R}$ droite $u \in \mathbb{R$

Notation: $\lim_{x \uparrow u} f(x) = \lim_{x \to u^-} f(x) = \text{limite à gauche}, \lim_{x \downarrow u} f(x) = \lim_{x \to u^+} f(x) = \text{limite à droite}.$

Exemple: Si $f(x) = \frac{|x|}{x}$, alors $f(x) = \begin{cases} 1 & \text{si } x > 0 \\ -1 & \text{si } x < 0 \end{cases}$. Donc $\lim_{x \uparrow 0} f(x) = \lim_{x \uparrow 0} -1 = -1$ et $\lim_{x \downarrow 0} f(x) = \lim_{x \downarrow 0} 1 = 1$.

Proposition 4.6. Si f est définie au voisinage de u, alors $\lim_{x \to u} f(x) = \ell \Leftrightarrow \lim_{x \uparrow u} f(x) = \ell$ et $\lim_{x \downarrow u} f(x) = \ell$.

Preuve. Exercice. \Box

Remarque 4.5. Cela montre que $\lim_{x\to 0}\frac{|x|}{x}$ n'existe pas (limites à gauche et à droite ne sont pas égales).

Définition 4.4. Soit $f: D \to \mathbb{R}$ définie au voisinage de $\begin{pmatrix} +\infty \\ -\infty \end{pmatrix}$ (i.e. $\begin{vmatrix} a \\ b \end{vmatrix} = b$ pour un $a \in \mathbb{R}$). Alors f admet $\ell \in \mathbb{R}$ comme limite lorsque x tend vers $-\infty$ si $\forall \varepsilon > 0, \exists C \in \mathbb{R}$ tel que $\forall x \in D$ on a $\begin{cases} x \geq C \\ x < C \end{cases} \Rightarrow |f(x) - \ell| \leq \varepsilon.$

Notation: $\lim_{x \to \pm \infty} f(x) = \ell$, ou $f(x) \stackrel{x \to \pm \infty}{\longrightarrow} \ell$.

Exemple: $\lim_{x\to +\infty}\frac{1}{x}=0$. Soit $\varepsilon>0$. Posons $C=\frac{1}{\varepsilon}$. Alors dès que $x\geq C$, on a $|\frac{1}{x}-0|=0$ $\frac{1}{x} \le \frac{1}{C} \le \varepsilon$.

Remarque 4.6. $\lim_{x\to\pm\infty}f(x)=\ell\Leftrightarrow f(x)$ a une **asymptote horizontale** d'équation $y = \ell$.

Définition 4.5. Soit $f: D \to \mathbb{R}$ définie au voisinage de $u \in \mathbb{R}$. Alors f(x) tend vers $\begin{array}{l} +\infty \\ -\infty \end{array} \text{lorsque } x \text{ tend vers } u \text{, si } \forall A \in \mathbb{R}, \exists \delta > 0 \text{ tel que } \forall x \in D \setminus \{u\} \text{ on a } |x-u| \leq \delta \Rightarrow 0 \end{array}$ f(x) > A $f(x) \leq A$

Notation: $\lim_{x\to u} f(x) = \pm \infty$, ou $f(x) \xrightarrow{x\to u} \pm \infty$.

Exemple: $\lim_{x\to 0} \frac{1}{x^2} = +\infty$. Soit $A \in \mathbb{R}$, et posons $\delta = \frac{1}{\sqrt{A}}$. Alors, dès que $|x-0| \le \delta$, on a $\frac{1}{x^2} \ge \frac{1}{\delta^2} \ge A$, car $\frac{1}{\delta^2} \ge A \Leftrightarrow \delta^2 \ge \frac{1}{A}$.

Remarque 4.7. • On peut combiner 1), 2), 3): Par exemple, on a $\lim_{x \to 0} \frac{1}{x} = +\infty$, $\lim_{x \uparrow 0} \frac{1}{x} = -\infty, \lim_{x \to +\infty} 3x - 1 = +\infty.$

- $\lim_{x\to u^{\pm}} = \pm \infty \Leftrightarrow f(x)$ a une **asymptote verticale** d'équation x=u.
- 1), 2), 3) ont aussi leurs caractérisations avec des suites (exercice). De plus, les propriétés algébriques, ainsi que le théorème des deux gendarmes et des composées restent valables pour ces limites généralisées.
- Finalement, les résultats valables pour les suites $(+\infty + \infty = +\infty, -\infty \infty =$ $-\infty, \pm \infty + c = \pm \infty$, théorème du gendarme seul, $\infty(\pm \infty) = \pm \infty, \frac{c}{\pm \infty} = 0$) restent valables pour les limites infinies. Attention: $\infty - \infty$, $\frac{\infty}{\infty}$, $\frac{0}{0}$, $0 \cdot \infty$ sont toujours des formes indéterminées!

5 Fonctions continues

Définition 4.6. Soit $f: D \to \mathbb{R}$ définie au voisinage de $u \in \mathbb{R}$. Alors f est **continue** en u si $\lim_{x \to u} f(x) = f(u)$. Elle est **continue** sur D si elle est continue en tout $u \in D$.

Remarque 4.8. La formule $\lim_{x\to u} f(x) = f(u)$ implique 3 choses: 1) $u\in D$, 2) la limite existe et 3) elle vaut f(u).

Exemples: Polynômes, fonctions rationnelles, $\sqrt[n]{x}$, $\sin(x)$, $\cos(x)$, $\tan(x)$, $\arcsin(x)$, $\arccos(x)$, $\arctan(x) e^x$, $\log(x)$, ... sont continues sur leurs domaines (Exercice).

Remarque 4.9. Si f est continue en $u \in \mathbb{R}$, et $a_n \longrightarrow u$, alors $\lim_{n \to \infty} f(a_n) = f\left(\lim_{n \to \infty} a_n\right) = f(u)$. Exemple: $\lim_{n \to \infty} \sin\left(\frac{1}{n}\right) = \sin(0) = 0$.

Définition 4.7. Soit f définie au voisinage $\begin{cases} \text{à gauche} \\ \text{à droite} \end{cases}$ de $u \in \mathbb{R}$. Alors f est continue $\begin{cases} \text{à gauche} \\ \text{à droite} \end{cases}$ en x = u si $\begin{cases} \lim_{x \uparrow u} f(x) \\ \lim_{x \downarrow u} f(x) \end{cases} = f(u)$

Remarque 4.10. f est continue en $x=u \Leftrightarrow f$ est continue à gauche et à droite en x=u.

Exemple: $f(x) = \begin{cases} 2x + 1 & \text{si } x \ge 0 \\ \frac{\sin(x)}{x} & \text{si } x < 0. \end{cases} \Rightarrow f \text{ continue en tout } x \ne 0. \text{ En } x = 0, \text{ on a}$

 $\lim_{x\uparrow 0} f(x) = \lim_{x\uparrow 0} \frac{\sin(x)}{x} = 1 \text{ et } \lim_{x\downarrow 0} f(x) = \lim_{x\downarrow 0} 2x + 1 = 1. \text{ Donc } \lim_{x\to 0} f(x) = 1 = f(0), \text{ et } f$ est continue en x = 0. f est donc continue sur \mathbb{R} .

Opérations sur les fonctions continues: si f,g sont continues en x=u, alors $f+g, f\cdot g$, $\alpha f+\beta g, \frac{f}{g}$ (si $g(u)\neq 0$) sont continues en x=u. De plus, si f est continue en x=u et g est continue en x=f(u), alors $g\circ f$ est continue en x=u.

Exemple: $f(x) = \frac{\sin(x^2 + 8x + 1)}{\sqrt{x^2 + 5 + \cos(x)}}$ est continue sur $D(f) = \mathbb{R}$.

Définition 4.8 (Prolongements par continuité). Si $f: D \to \mathbb{R}$ est définie au voisinage de $u \in \mathbb{R}$, avec $u \notin D$ et est telle que $\lim_{x\to u} f(x) = \ell$, alors le **prolongement par continuité** de f en u est

$$\hat{f} \colon D \cup \{u\} \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} f(x) & \text{si } x \in D \\ \ell & \text{si } x = u. \end{cases}$$

Remarque 4.11. $\hat{f}: D \cup \{u\} \to \mathbb{R}$ est l'unique fonction continue telle que $\hat{f}(x) = f(x)$ si $x \neq u$, et $\hat{f}(u) = \ell$. Donc \hat{f} est continue en u.

Exemple: Si $f(x) = \frac{\sin(x)}{x}$, avec $D(f) = \mathbb{R}^*$, alors $\hat{f}(x) = \begin{cases} \frac{\sin(x)}{x} & \text{si } x \neq 0 \\ 1 & \text{si } x = 0. \end{cases}$ est le prolongement par continuité de f. (Cette fonction s'appelle parfois $\sin(x)$).

Contre-exemple: La fonction $f(x) = \cos(\frac{1}{x})$ n'admet pas de prolongement par continuité en x = 0 (car $\lim_{x\to 0} \cos(\frac{1}{x})$ n'existe pas).

Fonctions continues sur [a, b]:

Définition 4.9 (ou Rappel). Une fonction $f:[a,b] \to \mathbb{R}$ est **continue (jusqu'au bord)** si

- $\lim_{x \to u} f(x) = f(u)$ pour tout $u \in]a, b[$ (f continue sur]a, b[),
- $\lim_{x \uparrow b} f(x) = f(b)$ (f est continue à gauche en b),
- $\lim_{x\downarrow a} f(x) = f(a)$ (f est continue à droite en a).

Théorème 4.7 (Théorème de la valeur intermédiaire). Soit $f:[a,b] \to \mathbb{R}$ continue (jusqu'au bord). Alors

$$f([a,b]) = \left[\inf_{x \in [a,b]} f(x), \sup_{x \in [a,b]} f(x)\right].$$

Remarque 4.12. Cela veut dire que f atteint

- son inf, donc l'inf est un min: $\inf_{x \in [a,b]} f(x) = \min_{x \in [a,b]} f(x)$,
- son sup, donc le sup est un max: $\sup_{x \in [a,b]} f(x) = \max_{x \in [a,b]} f(x),$
- toutes les valeurs entre les deux!

De plus, f([a, b]) est donc un intervalle fermé.

Exemple d'application: L'équation $\cos(x) = x$ a une solution $x \in]0, \frac{\pi}{2}[$. En effet, on définit la fonction

$$f: [0, \frac{\pi}{2}] \longrightarrow \mathbb{R}$$

 $x \longmapsto f(x) = \cos(x) - x.$

Cette fonction est continue (jusqu'au bord), et on remarque que $f(0) = \cos(0) - 0 = 1 > 0$ et $f(\frac{\pi}{2}) = \cos(\frac{\pi}{2}) - \frac{\pi}{2} = -\frac{\pi}{2} < 0$. Ainsi par le TVI, on a

$$f([0, \frac{\pi}{2}]) = [\underbrace{\min}_{<0}, \underbrace{\max}_{>0}] \ni 0 \Rightarrow \exists x_0 \in [0, \frac{\pi}{2}] \text{ tel que } f(x_0) = 0.$$

Comme $f(0) \neq 0 \neq f(\frac{\pi}{2}), x_0 \in]0, \frac{\pi}{2}[$, et comme $f(x_0) = 0 \Leftrightarrow \cos(x_0) = x_0$, on a trouvé une solution de l'équation.

Preuve du Théorème de la valeur intermédiaire. 1) f atteint $s = \sup_{x \in [a,b]} f(x) = \sup \operatorname{Im}(f)$. Par le théorème "pince à épiler", pour tout $\varepsilon > 0$ il existe $y \in \operatorname{Im}(f)$ tel que $s - \varepsilon \leq y \leq s$. On applique cela avec $\varepsilon = \frac{1}{n}$ pour trouver $y_n = f(x_n)$ tel que $s - \frac{1}{n} \leq f(x_n) \leq s$. Par le théorème des deux gendarmes, la suite $f(x_n)$ converge donc vers s. Comme $x_n \in [a,b]$, la suite $f(x_n)$ est bornée, et possède donc une sous-suite convergente $f(x_n)$, disons vers $f(x_n)$. Ainsi,

$$f(v) = f(\lim_{n \to \infty} x_{g(n)}) \stackrel{f \text{ continue}}{=} \lim_{n \to \infty} f(x_{g(n)}) \stackrel{\text{sous-suite}}{=} \lim_{n \to \infty} f(x_n) = s.$$

2) f atteint son inf: similaire à 1). On trouve donc $u \in [a, b]$ tel que $f(u) = \inf_{x \in [a, b]} f(x)$.

- 3) f atteint tout y tel que f(u) < y < f(v). On suppose que u < v, le cas u > v étant similaire. On pose $u_0 = u$ et $v_0 = v$, puis on définit récursivement u_{n+1} et v_{n+1} comme suit: Pour $t = \frac{u_n + v_n}{2}$, si f(t) = y, le processus s'arrête: on a atteint y. Si t < y, on pose $u_{n+1} = u_n$ et $v_{n+1} = t$, et si t > y, on pose $u_{n+1} = t$ et $v_{n+1} = v_n$. On trouve donc deux suites (u_n) et (v_n) , telles que
 - (i) $f(u_n) \le y \le f(v_n)$.
 - (ii) (u_n) est croissante et majorée (par b) \Rightarrow converge vers u_* .
 - (iii) (v_n) est décroissante et minorée (par a) \Rightarrow converge vers v_* .
 - (iv) $v_n u_n \le \frac{v u}{2^n} \longrightarrow 0 \Rightarrow u_* = v_* = w$.

On a donc $y \leq \lim_{n \to \infty} f(v_n) \stackrel{f \text{ cont.}}{=} f(w) \stackrel{f \text{ cont.}}{=} \lim_{n \to \infty} f(u_n) \leq y$, et donc f(w) = y. \square

Corollaire 4.8. Si $f: [a,b] \to \mathbb{R}$ est continue (jusqu'au bord) et que f(a) < 0 et f(b) > 0 (où l'inverse!) alors il existe $u \in [a,b[$ tel que f(u) = 0.

Preuve. Voir exemple avec $\cos(x) - x$.

Corollaire 4.9. Si $f: I \to \mathbb{R}$ est continue (jusqu'au bord) avec I = intervalle (= [a, b], ou [a, b[, ou $] - \infty, b[$, ...) alors Im(f) = f(I) est un intervalle.

Corollaire 4.10. Soit $f:[a,b] \to \mathbb{R}$ continue (jusqu'au bord). Alors f est injective $\Leftrightarrow f$ est strictement monotone.

Preuve. Pour \Leftarrow , voir le vrai/faux de la série 1. Pour \Rightarrow , supposons que f n'est pas strictement monotone. Il existe donc $u, v, w \in [a, b]$ tels que u < v < w, mais f(u) < f(v) > f(w) (ou la même chose en échangeant < avec >). Soit alors $y \in]\max\{f(u), f(w)\}, f(v)[$. En appliquant le TVI à $f|_{[u,v]}$ et a $f|_{[v,w]}$, on trouve deux éléments $x_1 \in]u, v[$ et $x_2 \in]v, w[$ tels que $f(x_1) = y = f(x_2)$. Comme on a nécessairement $x_1 < x_2$, f n'est pas injective.

Chapitre 5: Dérivées

1 Définition et exemples

Idée: Calculer la pente de la tangente au graphe d'une courbe.

Définition 5.1. Soit $f: D \to \mathbb{R}$ définie au voisinage de $x_0 \in D$. Alors f est **dérivable** (ou **différentiable**) en x_0 si la limite

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \stackrel{\text{def}}{=} f'(x_0) \quad \text{existe } \in \mathbb{R}.$$

Notations:

- $f'(x_0) = \frac{df}{dx}(x_0) = \partial_x f(x_0) = D_x f(x_0) = \dot{f}(x_0) = \cdots$
- $f'(x_0)$ est la **dérivée** de f en x_0 .
- f est **dérivable** si elle est dérivable en tout $x_0 \in D$.

• $f'(x_0)$ = pente de la tangente au graphe de f, au point $(x_0, f(x_0))$. Remarque 5.1.

• En faisant la substitution $x = x_0 + h$, on trouve la définition équivalente

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

Définition 5.2. La fonction dérivée d'une fonction $f: D \to \mathbb{R}$ est

$$f: D(f') \longrightarrow \mathbb{R}$$

 $x \longmapsto f'(x).$

On a $D(f') = \{x \in D \mid f \text{ est dérivable en } x\}.$

Exemples:

1)
$$f(x) = x^2$$
, $x_0 \in \mathbb{R}$. On a $f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{(x_0 + h)^2 - x_0}{h} = \lim_{h \to 0} \frac{2hx_0 + h^2}{h} = 2x_0.$
2) $f(x) = \sin(x)$, $x_0 \in \mathbb{R}$. On a

$$f'(x_0) = \lim_{h \to 0} \frac{\sin(x_0 + h) - \sin(x_0)}{h} = \lim_{h \to 0} \frac{\sin(x_0)\cos(h) + \cos(x_0)\sin(h) - \sin(x_0)}{h}$$
$$= \sin(x_0)\lim_{h \to 0} \frac{\cos(h) - 1}{h} + \cos(x_0)\lim_{h \to 0} \frac{\sin(h)}{h} = \cos(x_0),$$

où l'on a utilisé que $\lim_{h\to 0}\frac{\sin(h)}{h}=1$ et les inégalités $1-h^2\leq \cos(h)\leq 1\Rightarrow -h=\frac{1-h^2-1}{h}\leq \frac{\cos(h)-1}{h}\leq 0$, d'où $\lim_{h\to 0}\frac{\cos(h)-1}{h}=0$, cf Chapitre 4, section 3.

$$\frac{1-h^2-1}{h} \le \frac{\cos(h)-1}{h} \le 0$$
, d'où $\lim_{h\to 0} \frac{\cos(h)-1}{h} = 0$, cf Chapitre 4, section 3

Polycopié de 2023

On montre d'une manière analogue que la dérivée de $\cos(x)$ est $-\sin(x)$.

Proposition 5.1. Soit $f: D \to \mathbb{R}$ une fonction réelle.

- 1) Si f est dérivable en x_0 , alors f est continue en x_0 .
- 2) f dérivable en $x_0 \Leftrightarrow f(x) = f(x_0) + \alpha(x x_0) + r(x)$, où $\alpha \in \mathbb{R}$ et $r: D \to \mathbb{R}$ est une fonction telle que $\lim_{x \to x_0} \frac{r(x)}{r - r} = 0$.

Remarque 5.2. Avec des mots, la condition 2) est: f(x) = droite + reste r(x) avec $r(x) \stackrel{x \to x_0}{\longrightarrow} 0$ plus vite que $x - x_0$.

Preuve. 1)
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} (x - x_0) + f(x_0) = f'(x_0) \cdot \lim_{x \to x_0} (x - x_0) + f(x_0) = f'(x_0)$$

2) Esquisse vue en classe.

Remarque 5.3. f continue $\Rightarrow f$ dérivable. Exemple: Si f(x) = |x|, alors f est continue (partout, donc) en 0, mais on a

$$\lim_{h \downarrow 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \downarrow 0} \frac{h}{h} = 1 \neq -1 = \lim_{h \uparrow 0} \frac{-h}{h} = \lim_{h \uparrow 0} \frac{f(0+h) - f(0)}{h}.$$

Ainsi la limite $\lim_{h\to 0} \frac{f(0+h)-f(0)}{h}$ n'existe pas, et f n'est donc pas dérivable en 0.

Proposition 5.2 (Opérations algébriques sur les dérivées). Soient $f, g: D \to \mathbb{R}$ dérivables en x_0 .

- 1) $(p \cdot f + q \cdot g)'(x_0) = pf'(x_0) + qg'(x_0)$ pour tous $p, q \in \mathbb{R}$.
- 2) $(f \cdot g)'(x_0) = (f'g + fg')(x_0)$ 3) $\left(\frac{f}{g}\right)'(x_0) = \left(\frac{f'g fg'}{g^2}\right)(x_0)$.

Preuve. Exercice.

Dérivées de fonctions usuelles.

- 0) $f(x) = c \in \mathbb{R} \Rightarrow f'(x) = 0$ (la pente est nulle!)
- 1) $f(x) = x^n \Rightarrow f'(x) = nx^{n-1}$ pour tout $n \in \mathbb{N}^*$.

Preuve. Par récurrence. Init: (n = 1): f(x) = x, d'où $f'(x) = \lim_{h \to 0} \frac{(x+h) - x}{h} = 1$ 1. Pas de récurrence: Si $f(x) = x^{n+1} = xx^n$, on trouve, en utilisant la règle du produit: $f'(x) = (xx^n)' = 1 \cdot x^n + x(nx^{n-1}) = (n+1)x^n$.

2) $\sin'(x) = \cos(x)$ et $\cos'(x) = -\sin(x)$. Pour $\tan(x)$, on utilise la règle du quotient pour trouver: $\tan'(x)' = \left(\frac{\sin(x)}{\cos(x)}\right)' = \frac{\sin'(x)\cos(x) - \sin(x)\cos'(x)}{\cos^2(x)}$ $= \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)} = \frac{1}{\cos^2(x)}, \text{ ou bien } 1 + \tan(x).$

3) $f(x) = x^{-n}$ pour $n \in \mathbb{N}^*$ et $x \neq 0$. On écrit $x^{-n} = \frac{1}{x^n}$ puis on utilise la règle du quotient pour trouver $f'(x) = (-n)x^{-n+1}$.

Proposition 5.3 (Dérivée de composée). Soient $f: A \to B$ et $g: B \to \mathbb{R}$, avec f dérivable en x_0 et g dérivable en $f(x_0)$. Alors $(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0)$.

Preuve. On écrit $\frac{g(f(x)) - g(f(x_0))}{x - x_0} = \frac{g(f(x)) - g(f(x_0))}{f(x) - f(x_0)} \cdot \frac{f(x) - f(x_0)}{x - x_0}$. Le second quotient tend vers $f'(x_0)$ lorsque $x \to x_0$, et le premier vaut $\frac{g(y) - g(y_0)}{y - y_0}$ (changement de variables $y = f(x), y_0 = f(x_0)$) qui tend vers $g'(y_0)$ lorsque $x \to x_0 \Rightarrow y \to y_0$. \square

Exemple: $(\cos(x\sin(x)))'$. (Traité en classe.)

Proposition 5.4 (Dérivée des réciproques). Soit $f: A \to B$ bijective et dérivable sur tout A = intervalle ouvert. Si $f'(x) \neq 0$ pour tout $x \in A$, alors $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$ pour tout $x \in B$.

Preuve. On admet que f^{-1} est dérivable sur tout B. On dérive l'équation $x = f(f^{-1}(x))$ des deux côtés pour trouver $1 = f'(f^{-1}(x))(f^{-1})'(x)$, d'où $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$. \square

Exemples:

- $\sqrt[n]{x} = f^{-1}(x)$ où $f(x) = x^n$. (On suppose x > 0). Donc $(\sqrt[n]{x})' = (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{n(\sqrt[n]{x})^{n-1}} = \frac{1}{n}x^{1-n}n = \frac{1}{n}x^{\frac{1}{n}-1}$. On montre de manière analogue que $(x^{\frac{p}{q}})' = \frac{p}{q}x^{\frac{p}{q}-1}$, et on verra que $(x^u)' = ux^{u-1}$ pour tout $u \in \mathbb{R}$ (et x > 0).
- $\arcsin'(x) = \frac{1}{\cos(\arcsin(x))}$ pour $x \in]-1,1[$. Comme $\alpha = \arcsin(x) \in [-\frac{\pi}{2},\frac{\pi}{2}],$ on a $\cos(\alpha) \geq 0$, donc $\cos(\alpha) = \sqrt{\cos^2(\alpha)} = \sqrt{1-\sin^2(\alpha)}$ et ainsi $\cos(\arcsin(x)) = \sqrt{1-\sin^2(\arcsin(x))} = \sqrt{1-x^2}$. Il suit: $\arcsin'(x) = \frac{1}{\sqrt{1-x^2}}$.

Définition 5.3.
$$\lim_{\substack{h\downarrow 0\\h\uparrow 0}} \frac{f(x_0+h)-f(x_0)}{h} = \text{dérivée}$$
 à droite à gauche de f en x_0 .

Proposition 5.5. f est dérivable en $x_0 \Leftrightarrow f$ est dérivable à gauche et à droite en x_0 , et les valeurs sont égales.

Exemples:

- f(x) = |x|. En x = 0, la dérivée à droite vaut 1, et la dérivée à gauche vaut -1. Donc f'(0) n'existe pas.
- $f(x) = \sqrt[3]{x}$. La dérivée n'existe pas en 0 (elle vaut $+\infty$). Détails vus en classe.

Polycopié de 2023

Définition 5.4. La dérivée seconde de f est: $f''(x) = f^{(2)}(x) = (f'(x))'$. La dérivée **d'ordre** n est $f^{(n)}(x) = (f^{(n-1)}(x))'$. Autre notation: $f^{(n)}(x) = \frac{d^n}{dx^n} f$.

Définition 5.5. Soit I =]a, b[. Alors:

 $\mathcal{D}^n(I) = \{ f : I \to \mathbb{R} \mid f \text{ est } n \text{ fois dérivable sur } I \}, \text{ et }$

 $\mathcal{C}^n(I) = \{ f : I \to \mathbb{R} \mid f \text{ est } n \text{ fois dérivable sur } I \text{ et } f^{(n)} \text{ est continue} \}.$

On définit également $\mathcal{C}^{\infty}(I) = \{ f \colon I \to \mathbb{R} \mid f^{(n)} \text{ existe pour tout } n \in \mathbb{N} \}.$

• On a $\mathcal{D}^0(I) = \{\text{fonctions } f : I \to \mathbb{R} \} \text{ et } \mathcal{C}^0(I) = \{\text{fonctions conti-}\}$ Remarque 5.4. nues $f: I \to \mathbb{R}$.

• Comme toute fonction dérivable est continue, on a

$$\mathcal{C}^0 \supseteq \mathcal{D}^1 \supseteq \mathcal{C}^1 \supseteq \mathcal{D}^2 \supseteq \mathcal{C}^2 \supseteq \cdots \supseteq \mathcal{C}^{\infty}$$
.

Exemples:

- $\sqrt[3]{x} \in \mathcal{C}^0(\mathbb{R})$ et $\in \mathcal{C}^{\infty}(]0, +\infty[)$, mais $\notin \mathcal{D}^1(\mathbb{R})$.
- $(\mathcal{D}^1 \supseteq \mathcal{C}^1)$. Soit $f(x) = x^2 \cos(\frac{1}{x})$ si $x \neq 0$, prolongée par continuité en 0 via: f(0) = 0. Alors $f \in \mathcal{C}^{\infty}(]-\infty,0[) \cap \mathcal{C}^{\infty}(]0,+\infty[)$ et on calcule:

$$f'(x) = 2x\cos(\frac{1}{x}) + x^2(-\sin(x))\frac{-1}{x^2} = 2x\cos(\frac{1}{x}) + \sin(\frac{1}{x})$$
 si $x \neq 0$.

En x = 0, on a

$$\lim_{h\to 0}\frac{f(0+h)-f(0)}{h}=\lim_{h\to 0}\frac{h^2\cos(\frac{1}{h})}{h}=0.$$
 Donc f est dérivable en 0, et donc partout: $f\in\mathcal{D}^1(\mathbb{R})$. Sa dérivée est:

$$f'(x) = \begin{cases} 2x\cos(\frac{1}{x}) + \sin\frac{1}{x} & x \neq 0\\ 0 & x = 0. \end{cases}$$

En revanche, $\lim_{x\to 0} f'(x) = \lim_{x\to 0} \sin(\frac{1}{x})$ n'existe pas. Donc f' n'est pas continue en 0. Ainsi $f \notin \mathcal{C}^1(\mathbb{R})$, même si $f \in \mathcal{D}^1(\mathbb{R})$.

2 Dérivée et croissance

Théorème 5.6 (Théorème de Rolle). Soit $f:[a,b] \to \mathbb{R}$ continue (jusqu'au bord) et dérivable sur |a,b|. On suppose que f(a)=0=f(b). Alors il existe $u\in [a,b]$ tel que f'(u) = 0.

Preuve. Par le TVI, f atteint $M = \max_{x \in [a,b]} f(x)$, qu'on suppose > 0 (si $M \le 0$, on remplace par le min). Il existe donc $u \in]a,b[$ tel que f(u)=M. On a alors

$$f'(u) = \lim_{x \downarrow u} \frac{f(x) - f(u)}{x - u} = \lim_{x \downarrow u} \frac{f(x) - M}{x - u} = \lim_{x \downarrow u} \frac{\le 0}{\ge 0} \le 0 \text{ et}$$

$$f'(u) = \lim_{x \uparrow u} \frac{f(x) - f(u)}{x - u} = \lim_{x \uparrow u} \frac{f(x) - M}{x - u} = \lim_{x \uparrow u} \frac{\le 0}{\le 0} \ge 0.$$

Donc f'(u) = 0.

Théorème 5.7 (Théorème des accroissements finis). Soit $f:[a,b] \to \mathbb{R}$ continue (jusqu'au bord) et dérivable sur]a,b[. Alors il existe $u \in]a,b[$ tel que $f'(u) = \frac{f(b)-f(a)}{b-a}$.

Preuve. Appliquer le théorème de Rolle à $g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$.

Applications du Théorème des Accroissements finis: Soit $f:[a,b] \to \mathbb{R}$ continue (jusqu'au bord) et dérivable sur [a,b].

- 1) $f'(x) = 0 \Leftrightarrow f(x) = \text{constante}$. En effet, \Leftarrow est claire, et pour \Rightarrow , si $f \neq \text{constante}$, on trouve c < d tel que $f(c) \neq f(d)$. Le TAF donne alors $u \in]c, d[$ tel que $f'(u) = \frac{f(d) f(c)}{d c} \neq 0$.
- 2) Si $g: [a, b] \to \mathbb{R}$ est continue et dérivable sur]a, b[, et si on a f'(x) = g'(x), alors f(x) = g(x) + C. En effet, il suffit d'appliquer le 1) à f g.
- 3) $f'(x) \ge 0$ $\forall x \in]a, b[\Leftrightarrow f \text{ est } \frac{\text{croissante}}{\text{décroissante}} \text{ sur } [a, b].$ (Preuve de la première ligne vue en classe.)
- 4) f'(x) > 0 $\forall x \in]a, b[$ \Rightarrow f est strictement croissante f'(x) < 0 $\forall x \in [a, b]$.

Remarque 5.5. Attention, \Leftarrow du 4) est faux en général. En effet, la fonction $f(x) = x^3$ est strictement croissante, mais $f'(x) = 3x^2 \Rightarrow f'(0) = 0$, donc f' n'est pas > 0 sur \mathbb{R} .

Définition de la fonction exponentielle (et logarithme)

Théorème 5.8. Il existe une unique fonction $f: \mathbb{R} \to \mathbb{R}$ telle que $f'(x) = f(x) \ \forall x \in \mathbb{R}$ et f(0) = 1.

Preuve. Existence: plus tard! Unicité: 4 étapes.

- 1) Un tel f vérifie $f(x) \neq 0 \forall x \geq 0$. (Exercice).
- 2) Unicité sur \mathbb{R}_+ . Si $g \colon \mathbb{R} \to \mathbb{R}$ est un autre fonction telle que g'(x) = g(x) et g(0) = 1, alors $f(x) = g(x) \, \forall x \geq 0$. En effet, dès que $x \geq 0$, on a $f(x) \neq 0$, et donc on calcule $\left(\frac{g(x)}{f(x)}\right)' = \frac{g'f f'g}{f^2} = \frac{gf fg}{f^2} = 0$. Il suit que $\frac{f(x)}{g(x)} = C \Rightarrow f(x) = Cg(x)$. Mais 1 = g(0) = Cf(0) = C, donc g(x) = f(x) si $x \geq 0$.
- 3) f vérifie $f(x) \neq 0 \,\forall x \in \mathbb{R}$. Sinon, il existe u > 0 tel que f(-u) = 0. On pose alors g(x) = f(x) + f(x u). On a g'(x) = f'(x) + f'(x u) = g(x), et g(0) = f(0) + f(-u) = 1 + 0 = 1. Par unicité sur \mathbb{R}_+ , on a $g(x) = f(x) \,\forall x \geq 0$, d'où $f(x) + f(x u) = f(x) \Leftrightarrow f(x u) = 0 \,\forall x \geq 0$. Mais en posant x = u > 0, on trouve alors 1 = f(u u) = 0, une contradiction.
- 4) $Unicit\'e sur \mathbb{R}$: On procède exactement comme au 2).

Définition 5.6. Cette fonction s'appelle la **fonction exponentielle**, notée $\exp(x)$ (et e^x plus tard).

Propriétés de $\exp(x)$

- 1) $\exp'(x) = \exp(x)$ et $\exp(0) = 1$ (découle de la définition). Donc $\exp \in \mathcal{D}^1(\mathbb{R}) \Rightarrow \exp \in \mathcal{C}^0(\mathbb{R})$ (donc continue!) Mais comme $\exp = \exp' = \exp'' = \cdots = \exp^{(n)}$, on a $\exp \in \mathbb{C}^{\infty}(\mathbb{R})$.
- 2) $\exp(x) \neq 0$ pour tout $x \in \mathbb{R}$ (cf preuve!)

- 3) exp est strictement croissante sur \mathbb{R} . En effet, exp est continue et $\neq 0$, donc > 0 ou < 0. Comme $\exp(0) = 1$, on a $\exp'(x) = \exp(x) > 0$.
- 4) $\exp(x+y) = \exp(x) \exp(y)$ pour tous $x, y \in \mathbb{R}$. En effet, fixons $y \in \mathbb{R}$ et posons $g(x) = \frac{\exp(x+y)}{\exp(y)}$. Alors $g'(x) = \frac{\exp'(x+y)}{\exp(y)} = g(x)$ et $g(0) = \frac{\exp(y)}{\exp(y)} = 1$. Par unicité, il suit $g(x) = \exp(x) \Leftrightarrow \frac{\exp(x+y)}{\exp(y)} = \exp(x) \Leftrightarrow \exp(x+y) = \exp(x) \exp(y)$.

Remarque 5.6. Il suit que $\exp(-x) = \frac{1}{\exp(x)}$ (vu en classe).

- 5) $\lim_{x\to +\infty} \exp(x) = +\infty$ et $\lim_{x\to -\infty} \exp(x) = 0$. En effet, la seconde limite découlera de la première (changement de variable y=-x), et pour la première, on pose $g(x)=\exp(x)-x$. On a alors $g'(x)=\exp(x)-1>0$ si x>0 car exp est strictement croissante. Ainsi, dès que x>0, g est strictement croissante et donc $\exp(x)>x\longrightarrow +\infty$.
- 6) $\exp(1) = e = 2,7182818 \cdots = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$ (Exercice). Il suit que $\exp(2) = \exp(1+1) = \exp(1) \cdot \exp(1) = e \cdot e = e^2$, et par récurrence que $\exp(n) = e^n$. En prenant les quotients, on montre que $\exp(-n) = e^{-n}$, puis les racines, que $\exp(\frac{p}{q}) = e^{\frac{p}{q}}$.

Définition 5.7. Pour $x \in \mathbb{R}$, on pose $e^x \stackrel{\text{def}}{=} \exp(x)$.

Remarque 5.7. • En fait, $\exp(x) = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$ (Exercice).

• exp: $\mathbb{R} \to]0, +\infty[$ est strictement croissante, donc injective. La propriété 5) montre qu'elle est surjective (sur $]0, +\infty[$). Elle est donc bijective!

Définition 5.8. Le **logarithme** est la réciproque de exp:

$$\log:]0, +\infty[\longrightarrow \mathbb{R}$$

 $x \longmapsto \log(x).$

Autre notation: ln(x).

Propriétés de $\exp(x)$:

- 1) $D(\log) =]0, +\infty[$ et $\operatorname{Im}(\log) = \mathbb{R}$. De plus, $\log(1) = 0$, $\log \in \mathcal{C}^{\infty}(]0, +\infty[)$ et on a $x = \exp(\log(x)) \Rightarrow 1 = \exp'(\log(x)) \log'(x) = x \log'(x) \Rightarrow \log'(x) = \frac{1}{x} \operatorname{si} x > 0$.
- 2) $\log(xy) = \log(x) + \log(y)$. (Prendre exp des deux côtés!)
- 3) log est strictement croissante sur $]0, +\infty[$.
- 4) $\lim_{x\to +\infty} \log(x) = +\infty$ et $\lim_{x\downarrow 0} \log(x) = -\infty$. (Changement de variables $x=e^y$.)

Autres bases:

Définition 5.9. Pour a > 0, l'exponentielle en base a est

$$\exp_a \colon \mathbb{R} \longrightarrow]0, +\infty[$$
$$x \longmapsto \exp_a(x) \stackrel{\text{def}}{=} \exp(\log(a) \cdot x).$$

Pour $a > 0, a \neq 1$, le logarithme en base a est la réciproque de exp_a:

$$\log_a \colon]0, +\infty[\longrightarrow \mathbb{R}$$

$$x \longmapsto \log_a(x) = \frac{\log(x)}{\log(a)} \text{ (exercice facile)}.$$

Remarque 5.8. Comme pour exp, on s'aperçoit que $\exp_a(1) = \exp(\log(a) \cdot 1) = a$, puis que $\exp_a(n) = a^n$, $\exp_a(-n) = a^{-n}$ et $\exp_a(\frac{p}{q}) = a^{\frac{p}{q}}$.

Définition 5.10. Pour a > 0, on pose $a^x \stackrel{\text{def}}{=} \exp_a(x) = \exp(\log(a) \cdot x) = e^{\log(a)x}$.

Propriétés:

- $(a^x)' = \log(a)a^x$, et $\log_a'(x) = \frac{1}{\log_a(x)x}$.
- a^x est strictement croissante (décroissante) si a > 1 (a < 1).
- $\log_a(b^x) = x \log_a(b)$ (vu en classe).
- Changement de base: $\log_b(x) = \frac{\log_a(x)}{\log_a(b)}$ (Exercice!)

Remarque 5.9. Pour $u \in \mathbb{R}$ et x > 0, on a donc $x^u = \exp(\log(x)u)$, et donc $(x^u)' = \exp(\log(x)u)\frac{u}{x} = ux^{u-1}$, comme avant.

Définition 5.11 (Fonctions trigo hyperboliques).

$$\sinh(x) = \frac{e^x - e^{-x}}{2}, \quad \cosh(x) = \frac{e^x + e^{-x}}{2}, \quad \tanh(x) = \frac{\sinh(x)}{\cosh(x)}.$$

Remarque 5.10. Comme pour les définitions de sin et cos, mais sans i.

Propriétés:

- $\bullet \cosh^2(x) \sinh^2(x) = 1$
- $\sinh'(x) = \cosh(x)$ et $\cosh'(x) = \sinh(x)$.
- $\sinh \colon \mathbb{R} \to \mathbb{R}$ est bijective, de réciproque $\operatorname{arcsinh}(x) = \log(x + \sqrt{x^2 + 1})$.
- cosh: $[0, +\infty[\to [1, +\infty[$ est bij., de réciproque $\operatorname{arccosh}(x) = \log(x + \sqrt{x^2 1}).$

Théorème 5.9 (Règle de Bernoulli-L'Hospital (BH)). Soit $x_0 \in \mathbb{R}$ et $A = |x_0 - d, x_0| \cup |x_0, x_0 + d[$ un voisinage de x_0 . Soient $f, g: D \to \mathbb{R}$ avec $A \subseteq D$. Si

- 1) f, g sont dérivables sur A
- 2) $g(x) \neq 0$ et $g'(x) \neq 0$ pour $x \in A$,

4)
$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \ell \in \overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}.$$

Alors
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \ell$$
.

 $\it Id\'ee\ de\ la\ preuve.$ Utilise le Théorème des accroissements finis généralisé (Exercice). Explications vues en classe. \Box

Remarque 5.11. Il existe aussi une version avec $\lim_{x \downarrow x_0} \lim_{x \uparrow x_0} \lim_{x \to \pm \infty}$.

Exemples:

- $\bullet \lim_{x \to 0} \frac{\sin(x)}{x} \stackrel{BH}{=} \lim_{x \to 0} \frac{\cos(x)}{1} = \cos(0) = 1.$
- $\lim_{x \to +\infty} \frac{x^p}{\log(x)} \stackrel{BH}{=} \lim_{x \to +\infty} \frac{px^{p-1}}{1/x} = \lim_{x \to +\infty} px^p = +\infty \text{ si } p > 0, \text{ et } = 0 \text{ si } p \leq 0.$ Cela montre que $\log(x)$ croît moins vite que tout polynôme.
- $\lim_{x\to 0}\cos(x)^{3/x^2}=\lim_{x\to 0}\exp\left(\log(\cos(x))\frac{3}{x^2}\right)=\exp\left(\lim_{x\to 0}\frac{3\log(\cos(x))}{x^2}\right)$ par continuité de exp. En appliquant Bernoulli-L'Hospital à la limite intérieure, on trouve $\lim_{x\to 0}\frac{3\log(\cos(x))}{x^2}=3\lim_{x\to 0}\frac{-2}{\cos(2x)}\cdot\lim_{x\to 0}\frac{\sin(2x)}{2x}=-6, \text{ donc la limite initiale vaut }e^{-6}.$

 $\begin{array}{ll} \textit{Remarque} \ \ 5.12. \ \ \text{Attention: si} \ \ \lim_{x \to x_0} \frac{f'(x)}{g'(x)} \ \ \text{n'existe pas, alors BH ne marche pas. Par exemple, } \lim_{x \to 0} x \sin(\frac{1}{x}) \ = \ 0 \ \ \text{(en utilisant les deux gendarmes)} \ \ \text{mais} \ \ \lim_{x \to 0} x \sin(\frac{1}{x}) \ = \\ \lim_{x \to 0} \frac{x^2 \sin(\frac{1}{x})}{x} \ \ \stackrel{BH}{\neq} \lim_{x \to 0} \frac{2x \sin(\frac{1}{x}) - \cos(\frac{1}{x})}{1} \ \ \text{n'existe pas.} \end{array}$

3 Études de fonctions

Toute cette section est résumée dans le tableau "Relation entre fonction et dérivées" disponible sur moodle.

$f\colon I\to\mathbb{R}, I=\left]a,b\right[$	f' existe sur I $(f \in \mathcal{D}^1(I))$	f'' existe sur I $(f \in \mathcal{D}^2(I))$
f croissante sur I: $\forall x_1 < x_2 \text{ on a}$ $f(x_1) \le f(x_2)$	$f'(x) \ge 0 \ \forall x \in I$	<u>—</u>
f est convexe sur I : $\forall x_1 < x_2$ le graphe de f est en $dessous$ du segment $[(x_1, f(x_1)), (x_2, f(x_2))]$	f' est croissante sur I	$f''(x) \ge 0 \ \forall x \in I.$

Définition 5.12. $f: I \to \mathbb{R}$ est $\frac{\mathbf{convexe}}{\mathbf{concave}}$ si $\forall x_1 < x_2 \text{ et } \forall \lambda \in [0, 1]$, on a

$$f((1-\lambda)x_1 + \lambda x_2) \stackrel{\leq}{\geq} (1-\lambda)f(x_1) + \lambda f(x_2).$$

Proposition 5.10. Soit $f: I \to \mathbb{R}$ dérivable. Alors f est convexe $\Leftrightarrow f'$ est croissante. Preuve. Pour \Leftarrow , posons $t = (1 - \lambda)x_1 + \lambda x_2$. Alors il existe $u \in]x_1, t[$ et $v \in]t, x_2[$ tels que

$$\frac{f(t) - f(x_1)}{t - x_1} \stackrel{\text{TAF}}{=} f'(u) \le f'(v) \stackrel{TAF}{=} \frac{f(x_2) - f(t)}{x_2 - t},$$

où l'inégalité vient du fait que u < v et que f' est croissante. En réécrivant l'inégalité obtenue avec des λ , on tombe sur la définition de convexité.

Pour \Rightarrow , soient u < v. On a $f'(u) = \lim_{x \downarrow u} \frac{f(x) - f(u)}{x - u} = \lim_{\lambda \downarrow 0} \frac{f(t) - f(u)}{t - u}$, où l'on a fait le changement de variable $x = t = (1 - \lambda)u + \lambda v$. En faisant l'inverse de ce qu'on a fait au point précédent, on trouve que la convexité (entre u et v) est équivalente à $\frac{f(t) - f(u)}{t - u} \le \frac{f(v) - f(t)}{v - t}$. En prenant $\lim_{\lambda \downarrow 0}$, on trouve f'(v), et on a donc bien $f'(u) \le f'(v)$. \square

Définition 5.13. Soit $f: D \to \mathbb{R}$. Alors

- f admet un $\frac{\mathbf{maximum}}{\mathbf{minimum}}$ local en $x_0 \in D$ si $\frac{f(x_0) \ge f(x)}{f(x_0) \le f(x)}$ pour x dans un voisinage de x_0 .
- f admet un $\frac{\mathbf{maximum}}{\mathbf{minimum}}$ \mathbf{global} en $x_0 \in D$ si $\frac{f(x_0) = \max_{x \in D} f(x)}{f(x_0) = \min_{x \in D} f(x)}$
- un extremum de f est un min ou un max de f.

$f \colon I \to \mathbb{R}, I =]a, b[$	f' existe sur I et continue	f'' existe sur I et continue
$J: I \rightarrow \mathbb{R}, I = [u, b]$	en x_0	en x_0
f a un max local en x_0	f'(x) = 0 et f' passe de + à $-$ en $x_0 \Leftrightarrow f'$ décroît autour de x_0	$f''(x) \le 0$ autour de $x_0 \Leftarrow f''(x_0) < 0$.
f a un min local en x_0	f'(x) = 0 et f' passe de $-à + en x_0 \Leftrightarrow f' croîtautour de x_0$	$f''(x) \ge 0$ autour de $x_0 \Leftarrow f''(x_0) > 0$.
f a un point d'inflexion en $x_0 \Leftrightarrow f$ change de convexité/concavité en x_0	f' a un max local ou min local en x_0	$f''(x_0) = 0$ et f'' change de signe en x_0 .

Définition 5.14. Soit $f: D \to \mathbb{R}$. Alors f admet un **point stationnaire** en x_0 si $f'(x_0) = 0$.

Recherche d'extrema globaux: Soir $f:[a,b]\to\mathbb{R}$ continue. Alors les extrema (globaux) de f sont éléments de

- (i) $\{x_0 \in]a, b[|f'(x_0) = 0\}$ (points stationnaires)
- (ii) $\{x_0 \in]a, b[|f'(x_0)|$ n'existe pas $\}$
- (iii) $\{a, b\}$ les bords.

4 Développements limités

Idée: Approximations de fonctions par des polynômes (ex: $\sin(x) \approx x$ et $\cos(x) \approx 1$ pour x proche de 0) mais en gardant le contrôle sur l'erreur!

Définition 5.15 (DL en 0). Soit $f: D \to \mathbb{R}$ avec $I =]-d, d[\subseteq D$ (f est définie au voisinage I de 0, et en 0). Alors f admet un **développement limité d'ordre** $n \in \mathbb{N}$

en 0 si $\forall x \in I$, on a

$$f(x) = \text{polynôme de degré} \leq \frac{n}{n} + x^n \varepsilon(x)$$

où $\varepsilon \colon I \to \mathbb{R}$ est telle que $\varepsilon(0) = 0 = \lim_{x \to 0} \varepsilon(x)$.

Remarque 5.13. • Morale: Autour de 0, on a f = polynôme + reste de la forme $x^n \varepsilon(x)$ avec $\varepsilon(x) \xrightarrow{x \to 0} 0$. Cela veut dire que le reste $\longrightarrow 0$ plus vite que x^n .

• Formellement: $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + x^n \varepsilon(x)$ avec $a_i \in \mathbb{R}$.

Exemples:

- 1) $f(x) = \sin(x)$ admet un DL d'ordre n = 1 en 0. En effet, $\sin(x) = x + x^{1} \left(\frac{\sin(x)}{x} 1\right)$ si $x \neq 0$, donc $\sin(x) = x + x^{1} \varepsilon(x)$ avec $\varepsilon(x) = \begin{cases} \frac{\sin(x)}{x} 1 & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$. On vérifie que $\lim_{x \to 0} \varepsilon(x) = \lim_{x \to 0} \frac{\sin(x)}{x} 1 = 1 1 = 0 = \varepsilon(0)$.
- 2) f(x) = |x| admet un DL d'ordre n = 0 en 0. En effet, $f(x) = |x| = 0 + x^0 \varepsilon(x)$ avec $\varepsilon(x) = |x| \longrightarrow 0 = \varepsilon(0)$.
- 3) f(x) = |x| n'admet pas de DL d'ordre n = 1 en 0. Sinon, on aurait $f(x) = a_0 + a_1 x + x^{\frac{1}{2}} \varepsilon(x)$. Alors $f(0) = a_0$, et donc

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{a_1 x + x \varepsilon(x)}{x} = a_1 + \varepsilon(0) = a_1,$$

contredisant le fait que f n'est pas dérivable en 0 (vu précédemment).

Remarque 5.14. En fait, f admet un DL d'ordre 0 en $a \Leftrightarrow f$ est continue en a et f admet un DL d'ordre 1 en $a \Leftrightarrow f$ est dérivable en a (exercice).

Proposition 5.11 (Unicité des DL). Les DL sont uniques (s'ils existent). Plus précisément, si $(pour \ n \leq m)$

$$\begin{aligned}
&\leq m, \\
&f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + x^n \, \varepsilon(x) \\
&= b_0 + b_1 x + b_2 x^2 + \dots + b_n x^m + x^m \, \varepsilon_2(x), \\
&\xrightarrow[x \to 0]{} &\xrightarrow[x \to 0]{} &\xrightarrow[x \to 0]{} &\end{aligned}$$

alors $a_k = b_k$ pour tout $k \le n$.

Preuve. Exercice.

Définition 5.16. Soit $a \in \mathbb{R}$ et $f: D \to \mathbb{R}$ avec $I =]a - d, a + d[\subseteq D$ (f est définie au voisinage I de a, et en a). Alors f admet un **développement limité d'ordre** $n \in \mathbb{N}$ en/autour de a si f(x + a) admet un DL d'ordre n en $0 \Leftrightarrow f(x + a) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n + x^n \varepsilon(x)$ avec $a_i \in \mathbb{R} \Leftrightarrow a_i = 0$

$$f(x) = a_0 + a_1(x - a) + a_2(x - a)^2 + \dots + a_n(x - a)^n + (x - a)^n \tilde{\varepsilon}(x)$$
où $\tilde{\varepsilon}$: $I \to \mathbb{R}$ est telle que $\varepsilon(a) = 0 = \lim_{x \to a} \varepsilon(x)$.

Exemple: $f(x) = \sin(x)$ admet un DL d'ordre n = 1 en $a = \frac{\pi}{4}$. En effet, $\sin(x) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}(x - \frac{\pi}{4}) + (x - \frac{\pi}{4})^1 \tilde{\varepsilon}(x)$, avec $\tilde{\varepsilon}(x) = \frac{\sin(x) - \sqrt{2}/2}{x - \pi/4} - \frac{\sqrt{2}}{2}$ (prolongée par continuité en 0). On vérifie que $\lim_{x \to \pi/4} \tilde{\varepsilon}(x) = \lim_{x \to \pi/4} \frac{\sin(x) - \sin(\pi/4)}{x - \pi/4} - \frac{\sqrt{2}}{2} = \sin'(\pi/4) - \sqrt{2}/2 = 0$.

Théorème 5.12 (Formule de Taylor). Soit $f \in C^n(I)$ avec I = intervalle ouvert $\ni a$. Alors f admet un DL d'ordre n en a:

$$f(x) = a_0 + a_1(x - a) + a_2(x - a)^2 + \dots + a_n(x - a)^n + (x - a)^n \tilde{\varepsilon}(x)$$

où les a_i sont donnés par

$$a_0 = f(\mathbf{a}), a_1 = f'(\mathbf{a}), a_2 = \frac{f''(\mathbf{a})}{2}, \dots, a_k = \frac{f^{(k)}(\mathbf{a})}{k!}, \dots, a_n = \frac{f^{(n)}(\mathbf{a})}{n!}.$$

Donc

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k + x^n \tilde{\varepsilon}(x) \cdot \sum_{\substack{n \to 0 \\ x \to 0}}^{n} \tilde{\varepsilon}(x).$$

Preuve. Technique!

Remarque 5.15 (Formule pour $\tilde{\varepsilon}(x)$). On a $\tilde{\varepsilon}(x) = \frac{1}{n!} (f^{(n)}(u) - f^{(n)}(a))$ pour un u entre x et a. De plus, si $f \in \mathcal{D}^{n+1}(I)$, alors $\tilde{\varepsilon}(x) = \frac{1}{(n+1)!} f^{(n+1)}(v)(x-a)$ pour un v entre x et a.

Développements limités à connaître:

• $f(x) = \sin(x)$ est dans $C^{\infty}(\mathbb{R})$. Il existe donc un DL de n'importe quel ordre, autour de n'importe quel $a \in \mathbb{R}$! Pour le DL en 0, on calcule: $f^{(k)}(0) = 0, 1, 0, -1, 0, 1, 0, -1, \ldots$, et donc $f^{(2n)}(0) = 0$ et $f^{(2n+1)} = (-1)^n$. Ainsi:

$$\sin(x) = x - \frac{1}{6}x^3 + \frac{1}{5!}x^5 - \frac{1}{x^7}x^7 + \dots + \frac{(-1)^n}{(2n+1)!}x^{2n+1} + x^{2n+1} \underset{x \to 0}{\varepsilon(x)}$$

(DL d'ordre 2n + 1 en 0).

Remarque 5.16. Donc $\sin(x) \approx x \approx x - \frac{1}{6}x^3 \approx x - \frac{1}{6}x^3 + \frac{1}{5!}x^5 \approx \cdots$

- $\cos(x) = 1 \frac{1}{2}x^2 + \frac{1}{4!}x^4 \frac{1}{6!}x^6 + \dots + \frac{(-1)^n}{(2n)!}x^{2n} + x^{2n} \underset{x \to 0}{\varepsilon(x)} \text{ (DL d'ordre } 2n \text{ en } 0).$
- $e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + x^n \varepsilon(x)$ (DL d'ordre n en 0).
- $\log(1+x) = x \frac{1}{2}x^2 + \frac{1}{3}x^3 \pm \dots + \frac{(-1)^{n-1}}{n}x^n + x^n \underset{x \to 0}{\varepsilon(x)} \text{ (DL d'ordre } n \text{ en } 0\text{)}.$
- $\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + x^n \underset{x \to 0}{\varepsilon(x)}$ (DL d'ordre n en 0). Ici la formule

de Taylor est trop compliquée: Comme $\sum_{k=0}^n x^k = \frac{1-x^{n+1}}{1-x} = \frac{1}{1-x} - x^n \frac{x}{1-x}, \text{ on }$

trouve
$$\frac{1}{1-x} = \sum_{k=0}^{n} x^k + x^n \varepsilon(x)$$
 avec $\varepsilon(x) = \frac{x}{1-x} \xrightarrow{x \to 0} 0$.

•
$$\frac{1}{1+x} = 1 - x + x^2 - x^3 \pm \dots + (-1)^n x^n + x^n \varepsilon(x) \ (DL \text{ d'ordre } n \text{ en } 0).$$

Application: Calculs de limites!

•
$$\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{x + x\varepsilon(x)}{x} = 1 + \lim_{x \to 0} \varepsilon(x) = 1.$$

•
$$\lim_{x \to 0} \frac{\sin(x) - x}{x^3} = -\frac{1}{6}$$
 (Vu en classe).

$$\bullet \lim_{x \to 0} \frac{\cos(x) - 1 + \frac{x^2}{2}}{x^4} = \lim_{x \to 0} \frac{1 - \frac{x^2}{2} + \frac{x^4}{4!} + x^4 \varepsilon(x) - 1 + \frac{x^2}{2}}{x^4} = \frac{1}{24} + \lim_{x \to 0} \varepsilon(x) = \frac{1}{24}.$$

Autres exemples de DL:

1) DL d'ordre 4 en a=0 de $\frac{1}{\cos(x)}$. Idée: $\frac{1}{\cos(x)}=\frac{1}{1+(\cos(x)-1)}=\frac{1}{1+y}$, où $y=\cos(x)-1 \xrightarrow{x\to 0} 0$. On va combiner un DL de $\frac{1}{1+x}$ avec un DL de $\cos(x)-1$. On a

$$\frac{1}{1+y} = 1 - y + y^2 + y^2 \varepsilon(y) \quad \text{et} \quad y = \cos(x) - 1 = -\frac{1}{2}x^2 + x^2 \varepsilon_2(x)$$
$$= -\frac{1}{2}x^2 + \frac{1}{24}x^4 + x^4 \varepsilon_4(x).$$

Donc

$$\frac{1}{\cos(x)} = \frac{1}{1+y} = 1 - \left(-\frac{1}{2}x^2 + \frac{1}{24}x^4 + x^4\varepsilon_4(x)\right) + \left(-\frac{1}{2}x^2 + x^2\varepsilon_2(x)\right)^2 + \left(-\frac{1}{2}x^2 + x^2\varepsilon_2(x)\right)^2 \cdot \varepsilon(y).$$

En développant, on s'aperçoit que tous les termes touchant un terme rouge sont de la forme $x^4 \tilde{\varepsilon}(x)$. Ainsi

$$\frac{1}{\cos(x)} = 1 + \frac{1}{2}x^2 - \frac{1}{24}x^4 + \frac{1}{4}x^4 + \frac{x^4\tilde{\varepsilon}(x)}{2} = 1 + \frac{1}{2}x^2 + \frac{5}{24}x^4 + x^4\tilde{\varepsilon}(x).$$

Remarque 5.17. Ingrédients pour que ça marche:

- (i) DL de $\frac{1}{1+x}$ et de $\cos(x)$
- (ii) $y \xrightarrow{x \to 0} 0$ (sinon $\varepsilon(y) \not\longrightarrow 0$).
- 2) DL d'ordre 1 en 0 de $f(x) = e^{\cos(x)}$. On a $e^{\cos(x)} = e^{1+x\varepsilon(x)} = e \cdot e^y$ avec $y = x\varepsilon(x)$. Donc $e^{\cos(x)} = e(1+y+y\varepsilon_1(y)) = e+x\tilde{\varepsilon}(x)$. Attention: en posant $y = \cos(x)$

directement, on n'a pas $y \to 0$, donc le calcul ne marche pas (on ne trouve pas le DL de $e^{\cos(x)}$).

3) DL d'ordre 3 en a=0 de $\frac{1}{\cos(x)}$. On utilise le DL précédent:

$$\frac{1}{\cos(x)} = 1 + \frac{1}{2}x^2 + x^3(\underbrace{\frac{5}{24}x + x\varepsilon(x)}_{\text{nouveall }\varepsilon(x)}) = 1 + \frac{1}{2}x^2 + x^3\underbrace{\varepsilon(x)}_{x \to 0}.$$

Similairement, celui d'ordre 2 est $1 + \frac{1}{2}x^2 + x^2 \varepsilon(x)$, celui d'ordre 1 est $1 + x \varepsilon(x)$ $\underset{x \to 0}{\longrightarrow} 0$

et celui d'ordre 0 est $1 + \varepsilon(x)$. $\underset{x \to 0}{\overset{\longrightarrow}{\smile}}$

- 4) DL d'ordre 2 en a=0 de $f(x)=3x^2+4x$. On a $f(x)=4x+3x^2+x^2\varepsilon(x)$ avec $\varepsilon(x)=0$.
- 5) DL d'ordre 2 en a=2 de $f(x)=3x^2+4x$. (Presque) vu en classe.

5 Séries de Taylor

Rappel: Si $f \in \mathcal{C}^n(I)$ avec $I = \text{intervalle ouvert } \ni a$, on a

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \underbrace{(x-a)^n \varepsilon(x)}_{\substack{x \to 0 \ x \to 0}} (x)$$

Donc, si $f \in \mathcal{C}^{\infty}(I)$, a-t-on $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$? Il faut que 1) la série converge, et 2) le reste $r_n(x) \stackrel{n \to \infty}{\longrightarrow} 0$.

Définition 5.17. Pour $f \in \mathcal{C}^{\infty}(I)$ et $I = \text{intervalle ouvert } \ni a$, la série de Taylor de f centrée en a est la série $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$.

Remarque 5.18. • C'est une série entière! (centre = a. Rayon de convergence =?).

• Si a=0, on l'appelle aussi **Série de MacLaurin**.

Exemples:

1)
$$f(x) = \frac{1}{1-x} \in \mathcal{C}^{\infty}(]-1,1[), a = 0.$$
 On sait que (i) $\frac{1}{1-x} = \sum_{k=0}^{n} x^k + x^n \varepsilon(x),$ (ii)

les DL sont uniques $\Rightarrow a_k = \frac{f^{(k)}(0)}{k!} \Rightarrow$ la série de Taylor de f est $\sum_{k=0}^{\infty} x^k$, (iii) cette série converge pour tout $x \in]-1,1[$ et vaut $\frac{1}{1-x}$ (Série géométrique). En somme:

pour tout
$$x \in]-1,1[$$
, on a $\frac{1}{1-x} = \text{Taylor}\left(\frac{1}{1-x}\right)_{a=0} = \sum_{k=0}^{\infty} x^k$.

2)
$$f(x) = e^x \in \mathcal{C}^{\infty}(\mathbb{R}), a = 0$$
. On a $e^x = \sum_{k=0}^n \frac{x^k}{k!} + x^n \varepsilon(x)$ (DL en 0). La série de

Taylor est donc $\sum_{k=0}^{\infty} \frac{x^k}{k!}$, qui converge pour tout $x \in \mathbb{R}$ (cf Chapitre 3). Il reste à voir que $r_n(x) \stackrel{n \to \infty}{\longrightarrow} 0$. Par la formule du reste (remarque après la formule de Taylor), on a $\varepsilon(x) = \frac{1}{(n+1)!} f^{(n+1)}(v) \cdot x$ pour un v entre 0 et x. Donc $r_n(x) = x^n \varepsilon(x) = \frac{1}{(n+1)!} e^v x^{n+1}$, et ainsi

$$0 \le |r_n(x)| = \frac{e^v |x|^{n+1}}{(n+1)!} \le e^{|x|} \frac{|x|^{n+1}}{(n+1)!} \xrightarrow{n \to \infty} 0.$$

Ainsi $e^x = \text{Taylor}(e^x)_{a=0} = \sum_{k=0}^{\infty} \frac{x^k}{k!}$ pour tout $x \in \mathbb{R}$.

Proposition 5.13 (Dérivée de séries entières). Si $f(x) = \sum_{k=0}^{\infty} b_k (x-a)^k$ avec rayon de convergence r > 0, alors $f'(x) = \sum_{k=0}^{\infty} b_{k+1} (k+1) (x-a)^k$ avec même rayon de convergence r.

Preuve. Dériver terme à terme!

Conséquences:

- On peut définir $e^x = \exp(x) \stackrel{\text{def}}{=} \sum_{k=0}^{\infty} \frac{x^k}{k!}$ pour tout $x \in \mathbb{R}$. Alors $\exp(0) = 0$ et $\exp'(x) = \sum_{k=0}^{\infty} \frac{(k+1)x^k}{(k+1)!} = \sum_{k=0}^{\infty} \frac{x^k}{k!} = \exp(x)$. C'est donc (l'unique) solution de f' = f, f(0) = 1.
- Si $f(x) = \sum_{k=0}^{\infty} b_k (x-a)^k$, alors $f(a) = b_0$, $f'(a) = b_1$, $f''(a) = 2b_2$, ..., $f^{(k)}(a) = k!b_k$. Donc $b_k = \frac{f^{(k)}(a)}{k!}$, et cette série est déjà la série de Taylor de f.

Retour aux exemples:

3) $\log(1+x) = \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} x^k + x^n \varepsilon(x)$ (DL en 0). La série de Taylor est donc $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} x^k$, de rayon de convergence r=1. A l'aide de la proposition, on calcule

$$\left(\log(1+x) - \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} x^k\right)' = \frac{1}{1+x} - \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} k x^{k-1}$$
$$= \frac{1}{1-(-x)} - \sum_{k=1}^{\infty} (-x)^k = 0.$$

Donc $\log(1+x) - \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} x^k = C$, et en remplaçant x=0, on trouve C=0.

Ainsi, $\log(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} x^k$ pour tout $x \in]-1,1[$, et donc aussi pour tout $x \in]-1,1[$ par prolongement par continuité.

Remarque 5.19. Au passage, on a $\frac{1}{1+x} = \sum_{k=1}^{\infty} (-1)^k x^k$ pour tout $x \in]-1,1[$.

4)
$$\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$$
, $\cos(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}$ pour tout $x \in \mathbb{R}$ (exercice).

Remarque 5.20. Cela donne une raison pour la formule $e^{ix} = \cos(x) + i\sin(x)$. En effet, on a:

$$e^{ix} = \sum_{k=0}^{\infty} \frac{(ix)^k}{k!} = \underbrace{\sum_{k=0}^{\infty} \frac{(ix)^{2k}}{(2k)!}}_{\text{termes pairs}} + \underbrace{\sum_{k=0}^{\infty} \frac{(ix)^{2k+1}}{(2k+1)!}}_{\text{termes impairs}}$$
$$= \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k} + i \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1} = \cos(x) + i \sin(x).$$

5)
$$\sinh(x) = \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} x^{2k+1}$$
, $\cosh(x) = \sum_{k=0}^{\infty} \frac{1}{(2k)!} x^{2k}$ pour tout $x \in \mathbb{R}$.

6) Contre-exemple à f = Taylor(f): On considère $f(x) = e^{-1/x^2}$ prolongée en x = 0 par f(0) = 0. Alors $f'(x) = \frac{2}{x^3}$ si $x \neq 0$, et on calcule $\lim_{x \to 0} f'(x) = 0$ (vu en cours). Ainsi $f'(x) = \frac{2}{x^3}$, prolongée en x = 0 par f'(0) = 0 (cf Série 11, ex 1). Ainsi, $f \in \mathcal{C}^{\infty}(\mathbb{R})$ et $f^{(n)}(0) = 0$ pour tout $n \in \mathbb{N}$, d'où Taylor $(f)_{a=0} = \sum_{k=0}^{\infty} \frac{0}{k!} x^k = 0$.

Mais $f(x) = e^{-1/x^2} \neq \text{Taylor}(f)_{a=0}$ si $x \neq 0$. La raison est que le DL est $f(x) = 0 + r_n(x)$, avec reste $r_n(x) = e^{-1/x^2}$, qui ne tend pas vers 0 lorsque $n \to \infty$.

Remarque 5.21. Donc $\sin(x)$ et $\sin(x) + e^{-1/x^2}$ ont la même série de Taylor!

Chapitre 6: Intégrales

1 Primitives et intégrales

Définition 6.1. Soit $f: I \to \mathbb{R}$ (continue) où I = intervalle. Une **primitive** de f est une fonction dérivable $F: I \to \mathbb{R}$ telle que F'(x) = f(x) pour tout $x \in I$.

Remarque 6.1. Si F, G sont deux primitives de f, alors (F - G)' = f - f = 0, et donc F(x) = G(x) + C.

Notation: $\int f(x) dx = \{\text{primitives de } f\} = \{F(x) + C \mid C \in \mathbb{R}\}, \text{ où } F \text{ est une primitive de } f.$

Abus de notation: $\int f(x) dx = F(x) + C$.

f(x)	$\int f(x) dx$
$\frac{x}{x^r(r \neq -1)}$	$\frac{\frac{1}{2}x^2 + C}{\frac{1}{r+1}x^{r+1} + C}$
$\frac{1}{x} e^x \\ \sin(x)$	$\log x + C$ $e^x + C$ $-\cos(x) + C$
$\cos(x)$ 1	$\sin(x) + C$
$1 + \tan^2(x) + \frac{1}{\cos^2(x)}$	
$\frac{1+x^2}{\sqrt{1-x^2}}$	$\arcsin(x) + C$

Remarque 6.2. L'intégrale $\int f(x) dx$ s'appelle l'**intégrale indéfinie** de f.

Changeons d'angle de vue: Si $f: [a, b] \to \mathbb{R}$, quelle est l'aire sous la courbe du graphe de f? Pour approximer l'aire, on commence par choisir $a = x_0 < x_1 < x_2 < \cdots < x_n = b$ (c'est une partition de [a, b]). On obtient:

• Approx. 1 (Inférieure): Aire \approx aire des rectangles sous la courbe:

Approx.
$$1 = \sum_{i=1}^{n} \left(\inf_{x \in [x_{i-1}, x_i]} f(x) \right) \cdot (x_i - x_{i-1})$$

• Approx. 2 (Supérieure): Aire \approx aire des rectangles sur la courbe:

Approx.
$$2 = \sum_{i=1}^{n} \left(\sup_{x \in [x_{i-1}, x_i]} f(x) \right) \cdot (x_i - x_{i-1})$$

Remarque 6.3. On a: Approx. $1 \le Aire \le Approx. 2$.

Définition 6.2. Une fonction $f:[a,b] \to \mathbb{R}$ est **intégrable** (au sens de Riemann) si $\sup\{\text{Approx. } 1\} = \inf\{\text{Approx. } 2\} = A \in \mathbb{R}.$

Dans ce cas, on écrit $\int_a^b f(x) dx = A$, c'est l'**intégrale définie** de f sur [a, b].

Convention:
$$\int_a^a f(x) dx = 0 \text{ et } \int_b^a f(x) dx = -\int_a^b f(x) dx.$$

Remarque 6.4. $\int_a^b f(x) dx = \text{aire } sign\acute{e}e \text{ sous la courbe.}$

Théorème 6.1. Si $f:[a,b] \to \mathbb{R}$ est continue, ou monotone (ou continue partout sauf en un ensemble fini de points), alors f est intégrable (au sens de Riemann).

Preuve. Technique! (Monotone: exercice.)

Proposition 6.2 (Premières propriétés). Soient $f, g: [a, b] \to \mathbb{R}$ intégrables. Alors

1)
$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx \ pour \ \alpha, \beta \in \mathbb{R}.$$

2) Si
$$a < u < b$$
, $\int_a^b f(x) dx = \int_a^u f(x) dx + \int_u^b f(x) dx$.

3) Si
$$f(x) \le g(x)$$
 alors $\int_a^b f(x) dx \le \int_a^b g(x) dx$.

Preuve. Technique! (Idée vue en classe).

Remarque 6.5. • Cela définit l'**intégrale de Riemann**. Il en existe d'autres: Intégrale de Lebesgue, intégrale d'Itô, ...

•
$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(y) dy = \int_{a}^{b} f(\xi) d\xi.$$

• Comme $-|f(x)| \le f(x) \le |f(x)|$, le point 3) de la proposition implique

$$\left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} |f(x)| \, dx.$$

Théorème 6.3 (Théorème de la moyenne). Soit $f:[a,b] \to \mathbb{R}$ continue. Alors il existe $u \in]a,b[$ tel que $\int_a^b f(x) dx = f(u)(b-a)$.

 $\begin{array}{l} \textit{Preuve. Soit } m = \min_{x \in [a,b]} f(x) \text{ et } M = \max_{x \in [a,b]} f(x). \text{ Alors } m \leq f(x) \leq M \Rightarrow \int_a^b m \, dx \leq \int_a^b f(x) \, dx \leq \int_a^b M \, dx. \text{ Comme } \int_a^b m \, dx = m(b-a), \text{ en divisant par } (b-a), \text{ on obtient } m \leq y \leq M, \text{ où } y = \frac{1}{b-a} \int_a^b f(x) \, dx. \text{ Par le TVI, } f \text{ atteint } y\text{: il existe donc } u \in]a,b[\text{ tel que } f(u) = y. \end{array}$

Remarque 6.6. Donc $f(u) = \frac{1}{b-a} \int_a^b f(x) dx$ = valeur moyenne de f sur [a,b].

Lien entre \int et \int_a^b :

Théorème 6.4 (Théorème fondamental du calcul intégral). Soit $f:[a,b] \to \mathbb{R}$ une fonction continue.

1) La fonction

$$G \colon [a, b] \longrightarrow \mathbb{R}$$

$$x \longmapsto G(x) = \int_{a}^{x} f(t) dt$$

est une primitive de f sur [a,b].

2) Si F est une primitive de f sur [a,b], alors $\int_a^b f(x) dx = F(b) - F(a)$.

Preuve. 1) On a

$$G'(x) = \lim_{h \to 0} \frac{G(x+h) - G(x)}{h} = \lim_{h \to 0} \frac{1}{h} \left(\int_{a}^{x+h} f(t) dt - \int_{a}^{x} f(t) dt \right)$$
$$= \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t) dt = \lim_{h \to 0} \frac{1}{h} f(u) \cdot h = \lim_{u \to x} f(u) = f(x),$$

où l'on a utilisé le théorème de la moyenne pour trouver $u\in]x,x+h[\,;\, {\rm donc}\,\,u\to x$ lorsque $h\to 0.$

2) On a
$$F(x) = G(x) + C$$
 et donc $F(b) - F(a) = G(b) - G(a) + C - C = \int_a^b f(t) dt - 0$.

Notation: $\left[F(x)\right]_a^b = F(b) - F(a). \text{ Donc } \int_a^b f(x) \, dx = \left[\int f(x) \, dx\right]_a^b.$ Exemple: $\int_0^\pi \sin(x) \, dx = \left[-\cos(x)\right]_0^\pi = -\cos(\pi) - -\cos(0) = 2. \text{ Mais } \int_0^{2\pi} \sin(x) \, dx = \left[-\cos(x)\right]_0^{2\pi} = -\cos(2\pi) - -\cos(0) = 0 \text{ (l'aire négative compense l'aire positive)}.$

2 Calcul d'intégrales

Exemples faciles:

1)
$$\int (3x+1) dx = \frac{3}{2}x^2 + x + C$$
.

2)
$$\int_{0}^{2} a^{x} dx = \int_{0}^{2} e^{\log(a)x} dx = \frac{1}{\log(a)} e^{\log(a)x} + C = \frac{a^{x}}{\log(a)} + C.$$

3)
$$\int f(x)f'(x) dx = \frac{1}{2}f(x)^2 + C. \text{ Ex: } \int \sin(x)\cos(x) dx = \frac{1}{2}\sin^2(x) + C$$

4)
$$\int \frac{f'(x)}{f(x)} dx = \log|f(x)| + C. \text{ Ex: } \int \tan(x) dx = -\int \frac{-\sin(x)}{\cos(x)} = -\log|\cos(x)| + C.$$

5)
$$\int_0^{\pi/2} \cos^2(x) \, dx = \int_0^{\pi/2} \frac{1 + \cos(2x)}{2} \, dx = \left[\frac{x}{2} + \frac{\sin(2x)}{4} \right]_0^{\pi/2} = \frac{\pi}{4}.$$

Proposition 6.5 (Changement de variable / Substitution). Soit $f: [a, b] \to \mathbb{R}$ continue et $\varphi: [u, v] \to [a, b]$, avec $\varphi \in C^1([u, v])$ et $\varphi(u) = a, \varphi(v) = v$. Alors

$$\int_{a}^{b} f(x) dx = \int_{u}^{v} f(\varphi(t))\varphi'(t) dt.$$

Preuve. Soit F une primitive de f et $G(t) = F(\varphi(t))$. Alors $G'(t) = f(\varphi(t))\varphi'(t)$, d'où $\int_a^b f(x) \, dx = F(b) - F(a) = F(\varphi(v)) - F(\varphi(u)) = G(v) - G(u) = \int_u^v f(\varphi(t))\varphi'(t) \, dt.$

Remarque 6.7. Si φ est bijective, alors $F(x) = F(\varphi(\varphi^{-1}(x))) = G(\varphi^{-1}(x))$ et donc $\int f(x) dx = \int f(\varphi(t))\varphi'(t) dt$ évalué en $t = \varphi^{-1}(x)$.

Exemples:

- $\int_0^1 \sqrt{1-x^2} \, dx$. On considère $\varphi \colon [0,\frac{\pi}{2}] \to [0,1]; \varphi(t) = \sin(t)$. On a $\varphi(0) = 0, \varphi(\frac{\pi}{2}) = a$ et $\varphi'(t) = \cos(t)$. Écrit plus rapidement: $x = \sin(t) \Rightarrow \frac{dx}{dt} = \cos(t) \Rightarrow dx = \cos(t) dt$. Ainsi $\int_0^{\frac{\pi}{2}} \sqrt{1-\sin(t)^2} \cos(t) \, dt = \int_0^{\frac{\pi}{2}} \cos^2(t) \, dt = \frac{\pi}{4}$
- $\int \sqrt{1-x^2} \, dx$. On pose $\varphi \colon \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1,1]; \varphi(t) = \sin(t)$. Alors φ est bijective, et donc $\int \sqrt{1-x^2} \, dx = \int \sqrt{1-\sin(t)^2} \cos(t) \, dt = \int \cos^2(t) \, dt = \frac{1}{2}t + \frac{1}{4}\sin(2t) + C = \frac{1}{2}t + \frac{1}{2}\sin(t)\sqrt{1-\sin(t)^2}$ évalué en $t = \arcsin(x)$. Donc l'intégrale vaut $\frac{1}{2}\arcsin(x) + \frac{1}{2}x\sqrt{1-x^2}$.

Remarque 6.8. On peut aussi exprimer t en fonction de x. Exemple: $\int e^{x^2} x \, dx$. On substitue $t = x^2 \Rightarrow dt = 2x \, dx \Rightarrow x \, dx = \frac{dt}{2}$ pour trouver $\int e^{t} \frac{1}{2} \, dt = \frac{1}{2} e^{t} + C = \frac{1}{2} e^{x^2} + C$.

Comment choisir la bonne substitution? Difficile en général. Exemples

•
$$\int e^{x^2} x \, dx$$
, $\int \sin(x^2) x \, dx$: $t = x^2 =$ "ce qu'il y a dedans".

- $\int \frac{x}{1+x^2} dx$, $\int \frac{\sin(x)}{(1+\cos(x))^3} dx$: t = "ce qu'il y a dessous, ou dedans dessous".
- $\int \sqrt{1-x^2} dx$, $\int \sqrt{1+x^2} dx$: $t = \sin(x)$ ou $\sinh(x) = \text{"ce qui forme un } \cos^2 + \sin^2 = 1$ ou $\cosh^2 \sinh^2 = 1$ ".
- Fonctions rationnelles en sin, cos: $\int \frac{1}{\sin(x)} dx, \int \frac{1}{\sin^4(x)} dx. \text{ Ici, on substitue } t = \tan(x) \text{ "si les racines disparaissent" (et donc } dx = \frac{dt}{1+t^2}, \sin(x) = \frac{t}{\sqrt{1+t^2}}, \cos(x) = \frac{1}{\sqrt{1+t^2}}) \text{ et } t = \tan(\frac{x}{2}) \text{ sinon (et donc } dx = \frac{2dt}{1+t^2}, \sin(x) = \frac{2t}{1+t^2}, \cos(x) = \frac{1-t^2}{1+t^2}).$ Exemples:
 - $\int \frac{1}{\sin(x)}$. On pose $t = \tan(\frac{x}{2})$ pour trouver $\int \frac{1+t^2}{2t} \cdot \frac{2}{1+t^2} dt = \int \frac{1}{t} dt = \log|t| + C = \log|\tan(\frac{x}{2})| + C$.
 - $\int \frac{1}{\sin^4(x)}$. On substitue $t = \tan(x)$ pour trouver $\int \frac{(1+t^2)^2}{t^4} \cdot \frac{1}{1+t^2} dt = \int t^{-4} + t^{-2} dt = \frac{t^{-3}}{-3} + \frac{t^{-1}}{-1} + C = -\frac{1}{3\tan^3(x)} \frac{1}{\tan(x)} + C$

Proposition 6.6 (Intégration par parties). Soit $f \in C^0([a,b])$, $g \in C^1([a,b)]$ et F une primitive de f. Alors

$$\int_{a}^{b} \underbrace{f(x)}_{\uparrow} \underbrace{g(x)}_{\downarrow} dx = \left[F(x)g(x) \right]_{a}^{b} - \int_{a}^{b} F(x)g'(x) dx.$$

Preuve. On a (Fg)' = F'g + Fg' = fg + Fg' et donc $\int_a^b fg \, dx = \int_a^b (Fg)' \, dx - \int Fg' \, dx = \left[Fg\right]_a^b - \int Fg' \, dx.$

Remarque 6.9. Cela montre au passage que $\int f(x)g(x) dx = F(x)g(x) - \int F(x)g'(x) dx$.

Exemples:

1)
$$\int \underbrace{e^x}_{1} \underbrace{x}_{1} dx = e^x x - \int e^x dx = e^x (x - 1) + C.$$

2)
$$\int \log(x) dx = \int \underbrace{\log(x)}_{\uparrow} \underbrace{1}_{\downarrow} dx = \log(x)x - \int \frac{1}{x} \cdot x dx = x \log(x) - x + C.$$

3)
$$\int \cos(x)^2 dx = \int \underbrace{\cos(x)}_{\uparrow} \underbrace{\cos(x)}_{\downarrow} \underbrace{\cos(x)}_{\downarrow} dx = \sin(x) \cos(x) + \int \underbrace{\sin^2(x)}_{=1-\cos^2(x)} dx = \sin(x) \cos(x) + \int \underbrace{\sin^2(x)}_{=1-\cos^2(x)} dx = \sin(x) \cos(x) + \int \underbrace{\sin^2(x)}_{\downarrow} dx = \sin(x) \cos(x) + \int \underbrace{\cos^2(x)}_{\downarrow} dx = \underbrace{\sin^2(x)}_{\downarrow} \cos(x) + \int \underbrace{\cos^2(x)}_{\downarrow} dx = \underbrace{\sin^2(x)}_{\downarrow} \cos(x) + \int \underbrace{\cos^2(x)}_{\downarrow} dx = \underbrace{\cos^2(x)}_{\downarrow}$$

4) (Intégration par récurrence)

$$A_{n} = \int_{0}^{\pi/2} \cos^{2n}(x) dx = \int_{0}^{\pi/2} \underbrace{\cos(x)}_{\uparrow} \underbrace{\cos^{2n-1}(x)}_{\downarrow} dx$$

$$= \left[\sin(x) \cos^{2n-1}(x) \right]_{0}^{\pi/2} - \int_{0}^{\pi/2} \sin(x) (2n-1) \cos^{2n-2}(x) (-\sin(x)) dx$$

$$= 0 + (2n-1) \int_{0}^{\pi/2} \underbrace{\sin(x)}_{=1-\cos^{2}(x)} \cos^{2n-2}(x) dx$$

$$= (2n-1) \int_{0}^{\pi/2} \cos^{2(n-1)}(x) dx - (2n-1) \int_{0}^{\pi/2} \cos^{2n}(x) dx$$

$$= (2n-1) A_{n-1} - (2n-1) A_{n}.$$

Ainsi $2nA_n = (2n-1)A_{n-1}$, d'où $A_n = \frac{2n-1}{2n}A_{n-1}$ et $A_0 = \frac{\pi}{2}$. Cela permet de calculer tous les A_n récursivement. (Autre formule vue en classe).

Intégration de fonctions rationnelles: $\frac{p(x)}{q(x)}$, où p(x), q(x) = polynômes. Building Blocks:

(i)
$$\int \frac{1}{x+d} dx = \log|x+d| + C$$
. Donc, on a $\int \frac{1}{ax+d} dx = \frac{1}{a} \int \frac{1}{x+d/a} dx = \frac{1}{a} \log|x+d/a| + C$.

(ii)
$$\int_{-\infty}^{\infty} \frac{1}{(x+a)^k} dx = \int_{-\infty}^{\infty} (x+d)^{-k} dx = \frac{-1}{k-1} \frac{1}{(x+a)^{k-1}} + C.$$

(iii)
$$\int \frac{1}{x^2+1} dx = \arctan(x) + C. \text{ Donc, en substituant } u = x/d, \text{ on a } \int \frac{1}{x^2+d^2} dx = \int \frac{1}{d^2u^2+d^2} \cdot d \cdot du = \frac{1}{d} \int \frac{1}{u^2+1} du = \frac{1}{d} \arctan(\frac{x}{d}) + C. \text{ De plus, si le polynôme } x^2 + bx + c \text{ a un discriminant } \Delta = b^2 - 4c < 0, \text{ on peut écrire } x^2 + bx + c = (x+\frac{b}{2})^2 + \frac{-\Delta}{4} \text{ et donc, en substituant } u = \frac{x+b/2}{d}, \text{ on trouve}$$

$$\int_{-\frac{a^2}{a^2}}^{-\frac{a^2}{a^2}} \frac{1}{x^2 + bx + c} dx = \int_{-\frac{a^2}{a^2}}^{\frac{a^2}{a^2}} \frac{1}{dx} dx = \int_{-\frac{a^$$

(iv)
$$\int \frac{2x+b}{x^2+bx+c} dx = \log|x^2+bx+c| + C$$
.

(v)
$$\int \frac{2x+b}{(x^2+bx+c)^k} dx$$
: on substitue $u = x^2 + bx + c$, pour trouver $\int u^{-k} du = \frac{1}{1-k} u^{1-k} + C = \frac{1}{1-k} (x^2 + bx + c)^{1-k} + C$.

(vi)
$$\int \frac{1}{(x^2 + bx + c)^k} dx = \dots$$
 Formule par récurrence (cf exercices).

A l'aide de (i) - (vi), on peut intégrer tout $f(x) = \frac{p(x)}{q(x)}$ à l'aide de la décomposition en éléments simples. Méthode:

1) Si $\deg(p) \ge \deg(q)$, division polynomiale! Exemple: $\int \frac{3x^4 + 6}{x^4 - x^3 - x + 1} \, dx = \int \frac{3(x^4 - x^3 - x + 1)}{x^4 - x^3 - x + 1} + \frac{3x^3 + 3x + 3}{x^4 - x^3 - x + 1} \, dx = 3x + \int \frac{3x^3 + 3x + 3}{x^4 - x^3 - x + 1} \, dx.$

2) Factoriser q(x) et décomposer:

$\frac{p(x)}{q(x)} =$	$\frac{A}{x-u}$	$\frac{A_1}{x-u} + \frac{A_2}{(x-u)^2} + \dots + \frac{A_k}{(x-u)^k}$
pour chaque facteur	x-u	$(x-u)^k$
	$\frac{Ax+B}{2}$	$\frac{A_1x+B_1}{2}+\cdots+\frac{A_kx+B_k}{2}$
	$ax^2 + bx + c$	$ax^2 + bx + c \qquad (ax^2 + bx + c)^k$
pour chaque facteur	$ax^2 + bx + c$	$(ax^2 + bx + c)^k$

Exemple: $q(x) = x^4 - x^3 + x - 1 = x^3(x - 1) - (x - 1) = (x - 1)(x^3 - 1) = (x - 1)^2(x^2 + x + 1)$. On décompose:

$$\frac{3x^3 + 3x + 3}{x^4 - x^3 - x + 1} = \frac{A_1}{x - 1} + \frac{A_2}{(x - 1)^2} + \frac{A_3x + B_3}{x^2 + x + 1}$$

$$= \frac{(A_1 + A_3)x^3 + (A_2 - 2A_3 + B_3)x^2 + (A_2 + A_3 - 2B_3)x + (-A_1 + A_2 + B_3)}{x^4 - x^3 - x + 1}.$$

En comparant les coefficients, on trouve $A_1 = 1, A_2 = 3, A_3 = 2, B_3 = 1$. Donc $\frac{3x^3 + 3x + 3}{x^4 - x^3 - x + 1} = \frac{1}{x - 1} + \frac{3}{(x - 1)^2} + \frac{2x + 1}{x^2 + x + 1}.$

3) Intégrer les éléments simples! Exemple: $\int \frac{1}{x-1} dx = \log|x-1| + C,$ $\int \frac{3}{(x-1)^2} dx = \frac{-3}{x-1} + C, \int \frac{2x+1}{x^2+x+1} dx = \log|x^2+x+1| + C. \text{ Ainsi:}$ $\int \frac{3x^4+6}{x^4-x^3-x+1} dx = 3x + \log|x-1| + \frac{-3}{x-1} + \log(x^2+x+1) + C.$

3 Intégrales généralisées / impropres

On a vu que si $f:[a,b]\to\mathbb{R}$ est continue, l'intégrale $\int_a^b f(x)\,dx$ représente l'aire (signée) sous la courbe. On aimerait généraliser cela à $f:[a,b]\to\mathbb{R}$ et $f:[a,b]\to\mathbb{R}$. Exemples: $\int_0^1 \log(x)\,dx =?$, $\int_0^{+\infty} e^{-x}\,dx =?$

Problème: Ne marche pas directement car l'Approx. 1 ou l'Approx. 2 est toujours $\pm \infty$. Solution: Limites!

Définition 6.3. 1) Soit
$$f: [a, b[\to \mathbb{R} \text{ continue } (b \in \mathbb{R} \cup \{+\infty\}). \text{ Alors}]$$

$$\int_{a}^{b^{-}} f(x) dx \stackrel{\text{def}}{=} \lim_{u \uparrow b} \int_{a}^{u} f(x) dx.$$

2) Soit $f: [a, b] \to \mathbb{R}$ continue $(a \in \mathbb{R} \cup \{-\infty\})$. Alors

$$\int_{a^{+}}^{b} f(x) dx \stackrel{\text{def}}{=} \lim_{u \downarrow a} \int_{u}^{b} f(x) dx.$$

3) Soit $f:]a, b[\to \mathbb{R}$ continue $(a \in \mathbb{R} \cup \{-\infty\}, b \in \mathbb{R} \cup \{+\infty\})$. Alors $\int_{a^+}^{b^-} f(x) \, dx \stackrel{\text{def}}{=} \int_{a^+}^w f(x) \, dx + \int_w^{b^-} f(x) \, dx = \lim_{u \downarrow a} \int_u^w f(x) + \lim_{v \uparrow b} \int_w^v f(x) \, dx,$ où $w \in [a, b]$ est arbitraire.

Remarque 6.10. • Ce sont des intégrales généralisées/impropres.

- L'intégrale converge si la (les!) limite existe $\in \mathbb{R}$, et elle diverge sinon.
- Pour 3), on peut montrer que le résultat est indépendant du w choisi.

Notation:
$$\int_a^{+\infty^-} = \int_a^{+\infty}, \int_{-\infty^+}^b = \int_{-\infty}^b$$
. Exemples:

1)
$$\int_{0^{+}}^{1} \log(x) \, dx = \lim_{u \downarrow 0} \int_{u}^{1} \log(x) \, dx = \lim_{u \downarrow 0} \left[x \log(x) - x \right]_{u}^{1} = \lim_{u \downarrow 0} \left(-1 - u \log(u) - u \right) = -1 - \lim_{v \to +\infty} \frac{\log(1/v)}{v} = -1 + \lim_{v \to +\infty} \frac{\log(v)}{v} \stackrel{\text{BH}}{=} -1 + 0 = -1.$$

2)
$$\int_0^{+\infty} e^{-x} dx = \lim_{u \to +\infty} \int_0^u e^{-x} dx = \lim_{u \to +\infty} \left[-e^{-x} \right]_0^u = \lim_{u \to +\infty} (1 - e^{-u}) = 1.$$

3) Pour
$$r > 0$$
, on a $\int_{0^+}^1 \frac{1}{x^r} dx = \begin{cases} \frac{1}{1-r} & \text{si } r \le 1\\ +\infty & \text{si } r > 1. \end{cases}$ (Vu en classe.)

Exercice:
$$\int_{1}^{+\infty} \frac{1}{x^{r}} dx = \begin{cases} +\infty & \text{si } r \leq 1\\ \frac{1}{r-1} & \text{si } r > 1. \end{cases}$$

4)
$$\int_{-\infty}^{+\infty} \frac{1}{1+x^2} dx = \int_{-\infty}^{0} \frac{1}{1+x^2} dx + \int_{0}^{+\infty} \frac{1}{1+x^2} dx$$
$$= \lim_{u \to -\infty} \left[\arctan(x) \right]_{u}^{0} + \lim_{v \to +\infty} \left[\arctan(x) \right]_{0}^{v}$$
$$= 0 - \lim_{u \to -\infty} \arctan(u) + \lim_{v \to +\infty} \arctan(v) - 0 = - -\frac{\pi}{2} + \frac{\pi}{2} = \pi.$$

Remarque 6.11. Si $\int_{-\infty}^{+\infty} f(x) dx$ converge (i.e. si les deux limites existent $\in \mathbb{R}$) alors cette intégrale vaut $\lim_{u\to+\infty} \int_{-u}^{u} f(x) dx$ (c'est la valeur principale de Cauchy de l'intégrale).

Mais attention:

5)
$$\int_{-\infty}^{+\infty} x \, dx \stackrel{\text{def}}{=} \int_{-\infty}^{0} x \, dx + \int_{0}^{+\infty} x \, dx = \lim_{u \to -\infty} \frac{-u^2}{2} + \lim_{v \to +\infty} \frac{v^2}{2} = -\infty + \infty, \text{ donc l'intégrale diverge. En revanche, sa valeur principale de Cauchy existe et vaut
$$\lim_{u \to +\infty} \int_{-u}^{u} x \, dx = \lim_{u \to +\infty} \left[\frac{x^2}{2} \right]_{-u}^{u} = \lim_{u \to +\infty} \frac{u^2}{2} - \frac{u^2}{2} = 0. \text{ Ce } \mathbf{n'est donc pas} \text{ la valeur de l'intégrale.}$$$$

Polycopié de 2023

Proposition 6.7 (Comparaison d'intégrales). Soient $f, g: [a, b] \to \mathbb{R}$ continues telles que $0 \le f(x) \le g(x)$ pour tout $x \in [a, b]$. Alors

1)
$$\int_{a}^{b^{-}} g(x) dx$$
 converge $\Rightarrow \int_{a}^{b^{-}} f(x) dx$ converge
2) $\int_{a}^{b^{-}} f(x) dx$ diverge $\Rightarrow \int_{a}^{b^{-}} g(x) dx$ diverge.

Preuve. Théorème du gendarme seul!

Remarque 6.12. La prop. reste valable en remplaçant [a, b[par]a, b] et $\int_a^{b^-}$ par $\int_{a^+}^{b}$, et [a, b[par]a, b[et $\int_a^{b^-}$ par $\int_{a^+}^{b^-}$.

Exemple: $\int_0^{1^-} \frac{1}{\sqrt{1-t^3}} dt$ converge par comparaison. En effet, pour $t \in [0,1[$, on a $t^3 \le t \Rightarrow 1-t^3 \le 1-t \Rightarrow \sqrt{1-t^3} \ge \sqrt{1-t} \Rightarrow \frac{1}{\sqrt{1-t^3}} \le \frac{1}{\sqrt{1-t}}$ et en substituant x = 1-t, on trouve $\int_0^{1^-} \frac{1}{\sqrt{1-t}} dt = \int_{0+}^1 \frac{1}{\sqrt{x}} dx$ qui converge.

Proposition 6.8 (Comparaison intégrale/série). Soit $f: [n_0, +\infty[\to \mathbb{R} \ une \ fonction \ positive \ (f(x) \ge 0), \ continue \ et \ décroissante \ (pour x \ assez \ grand). Alors la série <math>\sum_{n=n_0}^{\infty} f(n)$ et l'intégrale $\int_{-\infty}^{+\infty} f(x) \ dx \ convergent/divergent \ en \ même \ temps.$

Preuve visuelle. Vue en classe.

Exemples:

•
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 converge $\Leftrightarrow \int_{1}^{+\infty} \frac{1}{x^p} dx$ converge $\Leftrightarrow p > 1$.

•
$$\sum_{n=2}^{\infty} \frac{1}{n(\log(n))^p}$$
 converge $\Leftrightarrow \int_2^{+\infty} \frac{1}{x(\log(x))^p} dx$. En substituant $u = \log(x)$, cette intégrale vaut $\int_{\log(2)}^{+\infty} \frac{1}{e^u \cdot u^p} e^u du = \int_{\log(2)}^{+\infty} \frac{1}{u^p} dx$ qui converge $\Leftrightarrow p > 1$. Ainsi la série $\sum_{n=2}^{\infty} \frac{1}{n(\log(n))^p}$ converge $\Leftrightarrow p > 1$.

En particulier, la série $\sum_{n=2}^{\infty} \frac{1}{n \log(n)}$ diverge, mais $\sum_{n=2}^{\infty} \frac{1}{n \log^2(n)}$ converge!