Remarque sur les corrigés

Lire une solution, même partielle, d'un exercice sans avoir essayé plusieurs $heures^1$ de le résoudre est presque totalement inutile. Faire un exercice en ayant la solution sous les yeux est $beaucoup \ plus \ facile$, et ne prépare que très mal à un examen (qui se fait sans solutions).

Par conséquent, la lecture du présent corrigé est déconseillée, et se fait à vos risques et périls.

^{1. (}même parfois plusieurs jours)

EPFL - Sections SIE/GC/SC

Solution 1.

- (a) $\forall A \in \mathbb{R}, \exists \delta > 0$ tel que $\forall x \in D \setminus \{4\}$, on a $x \in [4 \delta, 4] \Rightarrow f(x) \leq A$. Avec les suites: Pour toute suite $(x_n) \subset D \setminus \{4\}$ telle que $\lim_{n \to \infty} x_n = 4$ et $x_n < 4$, on a $\lim_{n\to\infty} f(x_n) = -\infty$.
- (b) $\forall A \in \mathbb{R}, \exists C \in \mathbb{R} \text{ tel que } \forall x \in D, \text{ on a } x \leq C \Rightarrow f(x) \geq A.$ Avec les suites: Pour toute suite $(x_n) \subset D$ telle que $\lim_{n \to \infty} x_n = -\infty$, on a $\lim_{n \to \infty} f(x_n) = +\infty.$

Solution 2.

- (a) Comme $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$, on a $\hat{f}(x) = \begin{cases} \frac{\sin(x)}{x} & \text{si } x \neq 0 \\ 1 & \text{si } x = 0. \end{cases}$
- (b) Comme $0 \le |x \sin(\frac{1}{x})| \le |x|$ une application du théorème des deux gendarmes donne $\lim_{x\to 0} |x\sin(\frac{1}{x})| = 0$, d'où $\lim_{x\to 0} x\sin(\frac{1}{x}) = 0$. On a donc

$$\hat{f}(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0\\ 0 & \text{si } x = 0. \end{cases}$$

(c) En faisant le changement de variable $y = \frac{1}{x^2}$, on trouve $\lim_{x\to 0} \arctan\left(\frac{1}{x^2}\right) =$ $\lim_{y\to+\infty} \arctan(y) = \frac{\pi}{2}$. On a donc:

$$\hat{f}(x) = \begin{cases} \arctan\left(\frac{1}{x^2}\right) & \text{si } x \neq 0\\ \frac{\pi}{2} & \text{si } x = 0. \end{cases}$$

- Solution 3.
 (a) $\lim_{x \downarrow 0} \frac{1}{x} \frac{1}{|x|} = \lim_{x \downarrow 0} 0 = 0$.
 - (b) $\lim_{x \uparrow 0} \frac{1}{x} \frac{1}{|x|} = \lim_{x \uparrow 0} \frac{2}{x} = \frac{2}{0^{-}} = -\infty.$
 - (c) $\lim_{x \uparrow 1} \frac{\sqrt{1-x^2}}{x-1} = -\lim_{x \uparrow 1} \frac{\sqrt{1-x}\sqrt{1+x}}{1-x} = -\lim_{x \uparrow 1} \sqrt{1+x} \cdot \lim_{x \uparrow 1} \frac{1}{\sqrt{1-x}} =$
 - (d) $\lim_{x \to -\infty} \frac{5x 6}{4 x^2} = \lim_{x \to -\infty} \frac{1}{x} \cdot \lim_{x \to -\infty} \frac{5 \frac{6}{x}}{\frac{4}{x} 1} = 0 \cdot \frac{5}{-1} = 0.$

(e)
$$\lim_{x \to -\infty} \frac{x^2 + 5x - 6}{4 - x} = \lim_{x \to -\infty} x \cdot \lim_{x \to -\infty} \frac{1 + \frac{5}{x} - \frac{6}{x^2}}{\frac{4}{x} - 1} = -\infty \cdot \frac{1}{-1} = +\infty.$$

(f) En multipliant par $\sqrt{x^2+x}+\sqrt{x^2+1}$ en haut et en bas, on trouve

$$\lim_{x \to +\infty} \sqrt{x^2 + x} - \sqrt{x^2 + 1} = \lim_{x \to +\infty} \frac{x^2 + x - (x^2 + 1)}{\sqrt{x^2 + x} + \sqrt{x^2 + 1}}$$

$$= \lim_{x \to +\infty} \frac{x}{x} \cdot \frac{1 - \frac{1}{x}}{\sqrt{1 + \frac{1}{x}} + \sqrt{1 + \frac{1}{x^2}}} = \frac{1}{1 + 1} = \frac{1}{2}.$$

(g) On utilise l'identité $a^3-b^3=(a-b)(a^2+ab+b^2)$ avec $a=\sqrt[3]{x+1}$ et $b=\sqrt[3]{x}$ pour obtenir

$$\lim_{x \to \infty} \left(\sqrt[3]{x+1} - \sqrt[3]{x} \right) = \lim_{x \to \infty} \frac{\left((x+1)^{\frac{1}{3}} - x^{\frac{1}{3}} \right) \left((x+1)^{\frac{2}{3}} + (x+1)^{\frac{1}{3}} x^{\frac{1}{3}} + x^{\frac{2}{3}} \right)}{(x+1)^{\frac{2}{3}} + (x+1)^{\frac{1}{3}} x^{\frac{1}{3}} + x^{\frac{2}{3}}}$$

$$= \lim_{x \to \infty} \frac{1}{(x+1)^{\frac{2}{3}} + (x+1)^{\frac{1}{3}} x^{\frac{1}{3}} + x^{\frac{2}{3}}} = 0.$$

(h) On multiplie par $\sqrt{(...)} + 1$ en haut et en bas pour trouver

$$\lim_{x \to \infty} x \left(\sqrt{(1 + \frac{2}{x})(1 + \frac{3}{x})} - 1 \right) = \lim_{x \to \infty} x \frac{(1 + \frac{2}{x})(1 + \frac{3}{x}) - 1}{\sqrt{(1 + \frac{2}{x})(1 + \frac{3}{x})} + 1}$$
$$= \lim_{x \to \infty} \frac{3 + 2 + \frac{6}{x}}{\sqrt{(1 + \frac{2}{x})(1 + \frac{3}{x})} + 1} = \frac{5}{2}.$$

Solution 4.

En factorisant, on remarque que

$$\frac{3x^2 - 10x + 3}{x^2 - 2x - 3} = \frac{(3x - 1)(x - 3)}{(x + 1)(x - 3)} = \frac{3x - 1}{x + 1} \text{ si } x \neq 3.$$

Ainsi, $\lim_{x\downarrow 3} f(x) = \lim_{x\downarrow 3} \frac{3x-1}{x+1} = 2$. De plus, $\lim_{x\uparrow 3} f(x) = \lim_{x\uparrow 3} \beta x - 4 = 3\beta - 4$. Finalement, $f(3) = \alpha$. Donc f est continue à droite en x = 3 si $\alpha = 2$, continue à gauche en x = 3 si $\alpha = 3\beta - 4$ et continue en x = 3 si $\alpha = 2$ et $3\beta - 4 = 2 \Rightarrow \beta = 2$.

Pour x=-1, on a $\lim_{x\uparrow-1}f(x)=\lim_{x\uparrow-1}\frac{3x-1}{x+1}=\frac{-4}{0^-}=+\infty$. Donc f ne peut pas être continue à gauche en x=-1 (car on devrait avoir $f(-1)=-\infty$, ce qui est impossible), et donc pas continue non plus en x=-1. Finalement, $\lim_{x\downarrow-1}f(x)=\lim_{x\downarrow-1}\beta x-4=-\beta-4=f(-1)$, donc f est toujours continue à droite en x=-1.

Solution 5.

(a) La fonction $f(x) = \cos(x) - x\sin(x)$ vaut 1 en 0 et $-\frac{\pi}{2}$ en $\frac{\pi}{2}$, elle possède donc un zéro dans $]0, \frac{\pi}{2}[$ qui se traduit par une solution de $\cos(x) = x\sin(x)$ dans $]0, \frac{\pi}{2}[$, donc dans [0, 2024].

- (b) On pose $f(x) = \sin(x) + \frac{1}{x-4}$. Alors $f(0) = -\frac{1}{4} < 0$, $f(\frac{\pi}{2}) = 1 + \frac{1}{\frac{\pi}{2}-4} > 0$, et $f(\pi) = \frac{1}{\pi-4} < 0$. f(x) possède donc un zéro dans $]0, \frac{\pi}{2}[$ et un zéro dans $]\frac{\pi}{2}, \pi[$, donc au moins deux zéros sur $[0, \pi]$.
- (c) On pose $f(x) = (x-2)\cos(x) \sin(x)$. Alors $f(-\pi) = 2+\pi > 0$, f(0) = -2 < 0 et $f(2\pi) = 2(\pi 1) > 0$. f(x) possède donc un zéro dans $]-\pi,0[$ et un zéro dans $]0,2\pi[$, donc au moins deux zéros sur \mathbb{R} .
- (d) Soit $p(x) = a_n x^n + \dots + a_1 x + a_0$ avec n impair. Supposons $a_n > 0$. Alors

$$\lim_{x \to +\infty} p(x) = \lim_{x \to +\infty} x^n \left(a_n + \frac{a_{n-1}}{x} + \dots + \frac{a_0}{x^n} \right) = +\infty \cdot a_n = +\infty.$$

Ainsi, il existe $b \in \mathbb{R}$ avec p(b) > 0. Similairement, $\lim_{x \to -\infty} p(x) = -\infty$, et il existe donc $a \in \mathbb{R}$ avec p(a) < 0. On trouve donc que f possède un zéro dans l'intervalle a, b, donc dans a.

Le cas $a_n < 0$ est similaire.

Solution 6.

On considère g(x) = f(x) - x. Comme f est à valeurs dans [a, b], on a $f(a) \ge a$ et donc $g(a) = f(a) - a \ge 0$. De manière analogue, $g(b) = f(b) - b \le 0$. Comme g est continue, le corollaire au TVI nous permet donc de trouver un $c \in [a, b]$ tel que $g(c) = 0 \Leftrightarrow f(c) = c$.

Solution 7.

- (a) Faux. On peut prendre $f(x) = \begin{cases} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \notin \mathbb{Q}. \end{cases}$ Pour g(x) = 1, on a alors f(q) = g(q) pour tout $q \in \mathbb{Q}$, mais $f(\sqrt{2}) = 0 \neq 1 = g(\sqrt{2})$.
- (b) Vrai. Si $x \in \mathbb{R}$, on peut trouver une suite de rationnels $(q_n) \subseteq \mathbb{Q}$ tels que $q_n \longrightarrow x$ (par densité de \mathbb{Q} dans \mathbb{R} , voir chapitre 1). Ainsi on a $f(x) = \lim_{n \to \infty} f(q_n) = \lim_{n \to \infty} g(q_n) = g(x)$ par continuité de f et g.
- (c) Faux. La fonction du point (a) n'est continue en aucun point. En effet, si $x_0 \in \mathbb{R}$, on trouve une suite de rationnels $(q_n) \subseteq \mathbb{Q}$ tels que $q_n \longrightarrow x_0$ comme au (b), et on construit la suite $a_n = q_n + \sqrt{2}/n$ qui est irrationnelle telle que $a_n \longrightarrow x_0$. Alors $f(q_n) = 1 \longrightarrow 1$ et $f(a_n) = 0 \longrightarrow 0$. Donc f n'est pas continue en x_0 .
- (d) Faux. Il suffit de prendre une fonction qui "alterne" entre les valeurs -1 et 1. Le carré est donc 1, qui est continue, mais pas la fonction de base. (Exemple: g(x) = 2f(x) 1 où f(x) est la fonction du (a)).
- (e) Faux. Prendre par exemple $f(x) = \frac{1}{1-x}\cos(\frac{1}{1-x})$. Pour $a_n = 1 \frac{1}{2n\pi}$ et $b_n = 1 \frac{1}{(2n+1)\pi}$, on remarque que $f(a_n) \longrightarrow +\infty$ et $f(b_n) \longrightarrow -\infty$. Donc f n'a pas de max ni de min sur [0,1[, et ne les atteint donc pas.

Solution 8.

L'image est toujours un intervalle fermé. C'est simplement le Théorème de la valeur intermédiaire.

Solution 9.

L'image est toujours un intervalle (Corollaire 2 au TVI, vu en cours), mais pas forcément ouvert ou fermé. Par exemple, si $f\colon]0,1[\to\mathbb{R}$ est définie par $f(x)=(x-\frac{1}{2})^2$, alors c'est une fonction continue, d'image $\left[0,\frac{1}{4}\right[$ qui n'est ni ouvert ni fermé.