Remarque sur les corrigés

Lire une solution, même partielle, d'un exercice sans avoir essayé plusieurs $heures^1$ de le résoudre est presque totalement inutile. Faire un exercice en ayant la solution sous les yeux est $beaucoup \ plus \ facile$, et ne prépare que très mal à un examen (qui se fait sans solutions).

Par conséquent, la lecture du présent corrigé est déconseillée, et se fait à vos risques et périls.

^{1. (}même parfois plusieurs jours)

EPFL - Sections SIE/GC/SC

Solution 1.

On raisonne comme dans le cours. Supposons que $\sqrt[3]{2} \in \mathbb{Q}$. On peut donc écrire $\sqrt[3]{2} = \frac{a}{b}$ avec a ou b impair (sinon on peut simplifier la fraction). Alors

$$\left(\frac{a}{b}\right)^3 = 2 \quad \Rightarrow \quad a^3 = 2b^3 \quad \Rightarrow \quad a^3 \text{ est pair } \Rightarrow \quad a \text{ est pair},$$

où, pour la dernière implication, on utilise le même argument que dans le cours: si a était impair, disons a=2k+1, alors $a^3=8k^3+12k^2+6k+1=2(\dots)+1$ serait aussi impair. Donc a est forcément pair. Il suit que a=2c, pour un $c\in\mathbb{Z}$ et on trouve donc l'équation

$$(2c)^3 = 2b^3 \implies 8c^3 = 2b^3 \implies 4c^3 = b^3 \implies b^3 \text{ est pair } \implies b \text{ est pair,}$$

où l'on a utilisé le même argument qu'avant dans la dernière implication. C'est absurde, car on a supposé que soit a soit b était impair. On conclut que $\sqrt[3]{2} \notin \mathbb{Q}$.

La preuve pour $\sqrt{3}$ est similaire. On suppose que $\sqrt{3} \in \mathbb{Q}$, et on écrit $\sqrt{3} = \frac{a}{b}$ avec a ou b non-divisible par 3. Par le même argument que plus haut, on trouve que $a^2 = 3b^2$, donc a^2 est un multiple de 3, et il suit que a est lui aussi un multiple de 3: sinon, a s'écrit comme 3k+1 ou 3k+2, et on vérifie que ces expressions élevées au carré ne donnent pas de multiple de 3. On continue sur les même lignes: on trouve que a = 3c, puis en remplaçant dans l'équation on trouve que b^2 doit lui aussi être un multiple de 3. C'est à nouveau absurde (on avait supposé que soit a soit b n'était pas un multiple de 3), et ainsi $\sqrt{3} \notin \mathbb{Q}$.

Pour montrer que $\sqrt{2} \in \mathbb{R}$, on considère l'ensemble $D = \{x \in \mathbb{R} \mid x^2 \leq 2\}$. Comme $D \subseteq \mathbb{R}$ est borné, $x = \sup D$ existe dans \mathbb{R} . La même preuve que la Prop 1.2 vue en cours montre que $x^2 = 2$. Comme x est positif, on a $x = \sqrt{2}$.

(On aurait aussi pu utiliser directement l'ensemble D de la Prop 1.2 et le fait que \mathbb{R} s'obtient à partir de \mathbb{Q} en ajoutant tous les sup et les inf des ensembles bornés; donc $x = \sup D \in \mathbb{R}$, qui vaut $\sqrt{2}$ car positif).

Solution 2.

Pour sup A, q est bien un majorant de A (puisque A =]p,q], donc $a \le q$ pour tout $a \in A$, par définition de l'intervalle). Est-ce le plus petit ? Si s < q, alors $a = q - \frac{q-s}{2}$ est dans A (car $a \le q$), mais a > q - (q - s) = s, et donc s n'est pas un majorant de A. Donc q est bien le plus petit majorant, et ainsi $q = \sup A$.

Pour inf A, c'est similaire: p est un minorant, et si t > p, alors $a = p + \frac{t-p}{2}$ est élément de A plus petit que t. Donc t n'est pas un minorant, et p est donc bien le plus grand des minorants, aka inf A.

Comme sup $A=q\in A$, max A existe et vaut q. Comme inf $A=p\notin A$, on ne peut pas avoir min $A=\inf A$ (car min A est forcément un élément de A). Par conséquent, min A n'existe pas.

Solution 3.

- (a) L'ensemble est borné, sup $A = \max A = \sqrt{2}$, inf A = -1 et min A n'existe pas.
- (b) L'ensemble est minoré mais pas majoré. On a sup $A = +\infty$ (et donc n'existe pas dans \mathbb{R}), inf $A = \sqrt{3}$ et max A et min A n'existent pas.
- (c) On a $|2x-1| \le 1 \Leftrightarrow -1 \le 2x-1 \le 1 \Leftrightarrow 0 \le x \le 1$, et donc $A = \{x \in \mathbb{R} \mid 0 \le x \le 1\} = [0,1]$. Donc l'ensemble est borné, $\sup A = \max A = 1$, et $\inf A = \min A = 0$.
- (d) L'ensemble A est borné: majoré par 1 (puisque $\frac{1}{n} \leq 1$ pour tout $n \in \mathbb{N}^*$) et minoré par 0 (car $\frac{1}{n} > 0$). Comme 1 est un majorant qui est dans A, on a max A = 1, et donc sup $A = \max A = 1$. Pour inf A, on a inf A = 0: On sait déjà que 0 est un minorant, mais est-ce le plus grand? Si x > 0, alors on choisit $n \in \mathbb{N}^*$ tel que $n > \frac{1}{x}$. Si $a = \frac{1}{n}$, alors a < x, et x ne minore donc pas A. Donc 0 est bien le plus grand minorant, d'où inf A = 0. Comme $0 \notin A$, min A n'existe pas.
- (e) On a $A = \{0\}$. Il est donc borné, et $\sup A = \max A = \inf A = \min A = 0$.
- (f) L'ensemble est borné: majoré par $\frac{1}{2}$ (puisque $\frac{(-1)^n}{n} \leq 0 \leq \frac{1}{n}$ si n est impair, et $\frac{(-1)^n}{n} = \frac{1}{n} \leq \frac{1}{2}$ si n est pair) et minoré par -1 (car $\frac{(-1)^n}{n} \geq 0 \geq -1$ si n est pair, et $\frac{(-1)^n}{n} = -\frac{1}{n} \geq -1$ si n est impair). Comme $\frac{1}{2} \in A$, on a max $A = \frac{1}{2} = \sup A$, et comme $-1 \in A$, on a min $A = -1 = \inf A$.
- (g) L'ensemble est borné: majoré par 1 (puisque $n < n+1 \Rightarrow \frac{n}{n+1} < 1$) et minoré par 0 (car $\frac{n}{n+1} \ge 0$). Comme $0 \in A$, on a min $A = \inf A = 0$. Pour sup A, il faut montrer que 1 est le plus petit majorant. Soit s < 1. On choisit $n \ge \frac{1}{1-s}$ et on pose $a = \frac{n}{n+1} \in A$. Alors

$$a = \frac{n}{n+1} = 1 - \frac{1}{n+1} > s \quad \Leftrightarrow \quad 1-s > \frac{1}{n+1} \quad \Leftrightarrow \quad n > \frac{1}{1-s} - 1$$

Ainsi a > s, et 1 est donc bien le plus petit majorant, d'où sup A = 1. Finalement, comme $\frac{n}{n+1} < 1$ pour tout n, il suit que sup $A = 1 \notin A$ et donc max A n'existe pas.

- (h) L'ensemble \mathbb{Q} contient \mathbb{Z} qui est non borné, et \mathbb{Q} n'est donc pas borné non plus. On a sup $A = +\infty$, inf $A = -\infty$, tous les deux n'existent donc pas dans \mathbb{R} , et max A et min A n'existent pas.
- (i) L'ensemble est borné: majoré par $\sqrt{2}$ et minoré par $-\sqrt{2}$. $\sqrt{2}$ est-il le plus petit majorant? Si $s<\sqrt{2}$, on utilise la densité de $\mathbb Q$ dans $\mathbb R$ pour trouver $q\in\mathbb Q$ avec $s< q<\sqrt{2}$. Comme $q\in A$, s n'est pas un majorant, et $\sqrt{2}$ est donc bien le plus petit, d'où sup $A=\sqrt{2}$. On montre similairement que inf $A=-\sqrt{2}$. Comme $\sqrt{2}\notin\mathbb Q$, sup $A=\sqrt{2}\notin A$ et donc max A n'existe pas. Similairement, min A n'existe pas.

3

Solution 4.

(a) A = [-2, 0].

(e) $A =]-\infty, -\sqrt[3]{3}$].

(b) $A = [-1, +\infty[$.

(c) $A =]-\infty, -\sqrt{2}] \cup [\sqrt{2}, +\infty[.$

(d) $A =]-3, -2] \cup [2, +\infty[$.

(f) $A =]-\sqrt{3}, -1[\cup]1, \sqrt{3}[$. (Attention de bien traiter les cas où $x^2 - 2 > 0$ et où $x^2 - 2 < 0$.)

Solution 5.

(a) Si $x = 0.\overline{9}$, alors $10x = 9.\overline{9} = 9 + 0.\overline{9} = 9 + x$. Donc $10x = 9 + x \Rightarrow 9x = 9 \Rightarrow x = 1$.

(b) On a $3.14159 = \frac{314159}{100000}$ et $55.\overline{612} = 55 + 0.\overline{612}$. Or si $x = 0.\overline{612}$, alors $1000x = 612.\overline{612} = 612 + 0.\overline{612} = 612 + x$. Donc $1000x = 612 + x \Rightarrow 999x = 612 \Rightarrow x = \frac{612}{999}$. Ainsi $55.\overline{612} = 55 + \frac{612}{999} = \frac{6173}{111}$.

(c) Une division en colonne donne $\frac{8}{13} = 0.615384615...$ On suppose donc que $\frac{8}{13} = 0.\overline{615384}$. Et on le montre comme au point (b)!

Solution 6.

(a) Vrai: $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$ (cela suit aussi directement du fait que \mathbb{Q} est un corps!)

(b) Faux: $\sqrt{2}$ est irrationnel, donc $-\sqrt{2}$ aussi, mais $0 = \sqrt{2} + (-\sqrt{2})$ est rationnel.

(c) Vrai: Pour $a \in \mathbb{Q}$ et $b \in \mathbb{R} \setminus \mathbb{Q}$, posons c = a + b. Si $c \in \mathbb{Q}$, alors c + (-a) est aussi dans \mathbb{Q} (par le point (a)), donc $b = c + (-a) \in \mathbb{Q}$, une contradiction. Cela force $c \notin \mathbb{Q}$ i.e., $c \in \mathbb{R} \setminus \mathbb{Q}$.

(d) Faux: [0, 1] est majoré, mais n'a pas de max.

(e) Vrai: C'est un théorème du cours.

(f) Vrai: Si A contient ≥ 2 éléments, on trouve $a, b \in A$ avec a < b. Donc inf $A \leq a < b \leq \sup A$, d'où inf $A \neq \sup A$. Donc A n'a qu'un élément.

Solution 7.

• $i^7 = -i = 0 - 1 \cdot i$.

• $(2-3i)^2 = -5-12i$.

• $\frac{1}{2+i} = \frac{2-i}{(2+i)(2-i)} = \frac{2-i}{4+1} = \frac{2}{5} - \frac{1}{5}i$.

• $(1+i)^2 = 2i = 0 + 2i$.

• $(1+i)^4 = (2i)^2 = -4 = -4 + 0i$.

• On a $(1+\sqrt{3}i)^3 = 1+3\sqrt{3}i+3(\sqrt{3}i)^2+(\sqrt{3}i)^3 = 1+3\sqrt{3}i-9-3\sqrt{3}i = -8$, d'où $(1+\sqrt{3}i)^6 = (-8)^2 = 64 = 64+0i$.

4