Remarque sur les corrigés

Lire une solution, même partielle, d'un exercice sans avoir essayé plusieurs $heures^1$ de le résoudre est presque totalement inutile. Faire un exercice en ayant la solution sous les yeux est $beaucoup \ plus \ facile$, et ne prépare que très mal à un examen (qui se fait sans solutions).

Par conséquent, la lecture du présent corrigé est déconseillée, et se fait à vos risques et périls.

^{1. (}même parfois plusieurs jours)

EPFL - Sections SIE/GC/SC

Solution 1.

On a $A \cup B = \{1, 2, 3, 4\}$, $A \cap B = \{3\}$, $A \setminus B = \{1\}$, $B \setminus A = \{2, 4\}$, $E \setminus A = \{2, 4, 5\}$, $E \setminus B = \{1, 5\}$, $E \setminus (A \cup B) = \{5\}$, $E \setminus (A \cap B) = \{1, 2, 4, 5\}$.

Solution 2.

- (a) On a $\emptyset^c = \{x \in X \mid x \notin \emptyset\} = X$ puisque $x \notin \emptyset$ est toujours vrai (\emptyset est vide, et ne contient donc aucun élément), et $X^c = \{x \in X \mid x \notin X\} = \emptyset$, puisque les deux conditions $x \in X$ et $x \notin X$ sont en contradiction (et donc l'ensemble des x qui les vérifie est vide).
- (b) On a $(A^c)^c = \{x \in X \mid x \notin A^c\}$. Comme $A^c = \{x \in X \mid x \notin A\}$, l'ensemble $(A^c)^c$ est donc formé des éléments de X qui ne vérifient pas la condition $x \notin A$, ce sont donc exactement les éléments de A. Ainsi $(A^c)^c = A$.
- (c) On montre la double inclusion: \subseteq et \supseteq . Soit $x \in (A \cap B)^c$. Donc $x \notin A \cap B$, et donc soit $x \notin A$, soit $x \notin B$ soit les deux. Cela se traduit par $x \in A^c$ ou $x \in B^c$ ou les deux, i.e. $x \in A^c \cup B^c$. Donc $(A \cap B)^c \subseteq A^c \cup B^c$. Soit maintenant $x \in A^c \cup B^c$. Donc $x \notin A$ ou $x \notin B$, i.e. x n'est pas dans A et dans B. Ainsi $x \notin A \cap B$, d'où $x \in (A \cap B)^c$. Cela montre $(A \cap B)^c \supseteq A^c \cup B^c$, d'où $(A \cap B)^c = A^c \cup B^c$. La seconde égalité se montre en prenant le complémentaire de chaque membre de la première égalité.

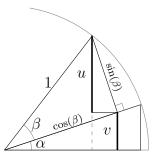
Solution 3.

- (a) $\{x \in \mathbb{Z} \mid x \le 0\} = \{0, -1, -2, \dots\}.$
- (b) $\{n \in \mathbb{Z} \mid n \text{ est pair}\}\$, ou mieux $\{2n \mid n \in \mathbb{Z}\} = \{\ldots, -4, -2, 0, 2, 4, \ldots\}$.
- (c) $\{n \in \mathbb{Z} \mid n \text{ est impair}\}\$, ou mieux $\{2n+1 \mid n \in \mathbb{Z}\} = \{\ldots, -3, -1, 1, 3, \ldots\}$.
- (d) $\{3n \mid n \in \mathbb{N}^*, n \neq 4\} = \{3, 6, 9, 15, 18, 21, \dots\}.$

Solution 4.

- (a) On calcule l'aire de la figure de deux façons. Pour la première, on remarque que c'est un carré de côté a+b, donc son aire est $(a+b)^2$. Pour la seconde, il y a 4 triangles rectangles de côtés a,b et donc d'aire $\frac{ab}{2}$, et un carré de côté c, donc d'aire c^2 . Comme c'est la même aire dans les deux cas, on a l'équation $(a+b)^2 = 4 \cdot \frac{ab}{2} + c^2 \Rightarrow a^2 + b^2 + 2ab = 2ab + c^2 \Rightarrow a^2 + b^2 = c^2$.
- (b) Dans un triangle rectangle d'hypoténuse 1, les côtés sont $a = \sin(x)$ et $b = \cos(x)$ où x est un angle. Par Pythagore, on a donc $a^2 + b^2 = 1$, i.e. $\sin(x)^2 + \cos(x)^2 = 1$.
- (c) On considère un triangle rectangle dont les deux petits côtés sont de longueur 1. Par Pythagore, l'hypoténuse est de longueur $\sqrt{2}$. En combinant deux de ces triangles, on obtient un carré, donc les angles non droits valent $\frac{\pi}{4}$. Il suit que $\sin(\frac{\pi}{4}) = \cos(\frac{\pi}{4}) = \frac{\text{côté}}{\text{hypoténuse}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$.

(d) Si on note u, v les côtés en gras, alors $\sin(\alpha + \beta) = u + v$. On remarque que $\sin(\alpha) = \frac{v}{\cos(\beta)}$, d'où $v = \sin(\alpha)\cos(\beta)$. De plus, l'angle adjacent à u est α , donc $\cos(\alpha) = \frac{u}{\sin(\beta)}$, d'où $u = \cos(\alpha)\sin(\beta)$.



Solution 5.

- (a) Si $f(x_1) = f(x_2)$, alors $g(f(x_1)) = g(f(x_2))$ (appliquer g(...) des deux côtés), et donc $x_1 = g(f(x_1)) = g(f(x_2)) = x_2$. Cela montre que f est injective. Pour la surjectivité de g, soit $x \in X$. On pose g = f(x), et on a g(g) = g(f(x)) = x, donc g est l'image de g par g. Comme g est deit arbitraire, tous les g sont atteints, et g est donc surjective.
- (b) On peut prendre $X = \{1\}, Y = \{1, 2\}$ et f qui envoie $1 \mapsto 1$ et g qui envoie $1 \mapsto 1$ et $2 \mapsto 1$.

Solution 6.

- (a) $D = \mathbb{R}, I = \mathbb{R}$, la fonction est bijective donc on doit prendre $A = D = \mathbb{R}$, la réciproque est $\frac{1-x}{2}$.
- (b) $D = \mathbb{R}, I = \mathbb{R}$, la fonction est bijective donc on doit prendre $A = D = \mathbb{R}$, la réciproque est $\sqrt[n]{x}$.
- (c) $D = \mathbb{R}, I = \mathbb{R}_+ = [0, +\infty[$. La fonction n'est pas injective: $1^n = 1 = (-1)^n$ si n est pair. On peut restreindre la fonction à $A = \mathbb{R}_+$, elle devient alors bijective, de réciproque $\sqrt[n]{x}$. On aurait aussi pu choisir $A =]-\infty, 0]$; elle serait alors également bijective, de réciproque $-\sqrt[n]{x}$.
- (d) $D = \mathbb{R}^* = \mathbb{R} \setminus \{0\} = I$. La fonction est bijective donc on doit prendre $A = D = \mathbb{R}^*$, la réciproque est $\frac{1}{x}$.
- (e) $D = \mathbb{R}, I =]-\infty, 1]$ (la fonction est maximale en x = 0). La fonction n'est pas injective: $1 1^2 = 0 = 1 (-1)^2$. On peut restreindre la fonction à $A = \mathbb{R}_+$, elle devient alors bijective, de réciproque $\sqrt{1-x}$.
- (f) $D = \mathbb{R}, I = [-13, +\infty[$: En effet, on a $x^2 8x + 3 = x^2 8x + 16 16 + 3 = (x 4)^2 13$, elle est donc minimale en x = 4 et de valeur minimale -13. La fonction n'est pas injective: 3 et 5 sont tout deux envoyés sur -12. On peut restreindre la fonction à $A = [4, +\infty[$, elle devient alors bijective. Pour sa réciproque on a $y = (x 4)^2 13 \Leftrightarrow (x 4)^2 = y + 13 \Leftrightarrow x = 4 \pm \sqrt{y + 13}$. Donc si on se restreint à $x \in [4, +\infty[$, sa réciproque est $4 + \sqrt{x + 13}$.
- (g) $D = \mathbb{R}, I = [-1, 1]$. La fonction n'est pas injective: $\sin(2 \cdot 0) = 0 = \sin(2 \cdot \pi)$. sin est injective sur $[-\frac{\pi}{2}, \frac{\pi}{2}]$, on peut donc restreindre la fonction à $A = [-\frac{\pi}{4}, \frac{\pi}{4}]$, elle devient alors bijective, de réciproque $\frac{1}{2}\arcsin(x)$.
- (h) $D = \mathbb{R} \setminus \{\text{z\'eros de cos}\} = \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi \mid k \in \mathbb{Z}\}, I = \mathbb{R}$. La fonction n'est pas injective: $2\tan(0) = 0 = 2\tan(\pi)$. On peut restreindre la fonction à $A =]-\frac{\pi}{2}, \frac{\pi}{2}[$, elle devient alors bijective, de réciproque $\arctan(\frac{1}{2}x)$.

- (i) $D = \mathbb{R}, I = \left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right] \operatorname{car} \frac{\pi}{4} \sin(x)$ prend des valeurs dans $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$, et donc $\sin(\frac{\pi}{4}\sin(x))$ prend des valeurs dans $\left[\sin(-\frac{\pi}{4}), \sin(\frac{\pi}{4})\right] = \left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]$. La fonction n'est pas injective: $\sin(\frac{\pi}{4}\sin(0)) = 0 = \sin(\frac{\pi}{4}\sin(\pi))$. On peut restreindre la fonction à $A = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, elle devient alors bijective, et a comme réciproque $\arcsin(\frac{4}{\pi}\arcsin(x))$.
- (j) $D=\mathbb{R}$ (car x^2+1 n'est jamais 0), I=]0,1] (car maximale en x=0). La fonction n'est pas injective: -1 et 1 sont tout deux envoyés sur $\frac{1}{2}$. On peut restreindre la fonction à $A=\mathbb{R}_+$, elle devient alors bijective. Pour sa réciproque on a $y=\frac{1}{x^2+1}\Leftrightarrow x^2=\frac{1}{y}-1\Leftrightarrow x=\pm\sqrt{\frac{1}{y}-1}$. Donc si on se restreint à $x\in\mathbb{R}_+$, sa réciproque est $\sqrt{\frac{1}{x}-1}$.
- (k) D = [-5, 5], car la fonction est bien définie si $25 x^2 \ge 0 \Leftrightarrow 25 \ge x^2 \Leftrightarrow -5 \le x \le 5$. I = [-1, 4], car $\sqrt{25 x^2}$ est une valeur entre 0 et 5, donc f(x) est entre -1 et 4. La fonction n'est pas injective: -5 et 5 sont tout deux envoyés sur -1. On peut restreindre la fonction à A = [0, 5], elle devient alors bijective. Pour sa réciproque on a $y = \sqrt{25 x^2} 1 \Leftrightarrow (y + 1)^2 = 25 x^2 \Leftrightarrow x = \pm \sqrt{25 (y + 1)^2}$. Donc si on se restreint à $x \in [0, 5]$, sa réciproque est $\sqrt{25 (x + 1)^2}$.
- (l) $D =]-\infty, 2]$, car $1 + \frac{1}{x-1}$ est bien défini si $x \leq 0$ et $\sqrt{4-x^2}$ est définie si $4-x^2 \geq 0$, donc si $0 \leq x \leq 2$. I = [0,2[, car si $0 < x \leq 2$, $\sqrt{4-x^2}$ prend des valeurs dans [0,2[, et si $x \leq 0$, $1 + \frac{1}{x-1}$ prend des valeurs dans [0,1[, donc n'ajoute pas de "nouveaux" éléments à l'image. La fonction n'est pas injective: 0 est envoyé sur $1 + \frac{1}{0-1} = 0$, et 2 sur $\sqrt{4-2^2} = 0$. On peut restreindre la fonction à A = [0,2], elle devient alors bijective, de réciproque $\sqrt{4-x^2}$.

Solution 7.

- (a) Faux. Par exemple $f: \mathbb{N} \to \mathbb{N}$ définie par f(1) = 2, f(2) = 1 et f(x) = x si $x \ge 3$ est une autre fonction bijective (il en existe une infinité indénombrable).
- (b) Vrai. Si $g \circ f(x_1) = g \circ f(x_2)$ alors posons $y_1 = f(x_1)$ et $y_2 = f(x_2)$. Alors $g(y_1) = g(f(x_1)) = g(f(x_2)) = g(y_2)$, donc $y_1 = y_2$ par injectivité de g. Donc $f(x_1) = y_1 = y_2 = f(x_2)$, d'où $x_1 = x_2$ par injectivité de f. Ainsi $g \circ f$ est injective.
- (c) Vrai. Si $z \in Z$, il existe $y \in Y$ tel que g(y) = z par surjectivité de g, et il existe $x \in X$ tel que f(x) = y par surjectivité de f. Donc $g \circ f(x) = z$, et $g \circ f$ est surjective.
- (d) Faux. La fonction constante $f: \mathbb{R} \to \mathbb{R}$ définie par f(x) = 17 est croissante (au sens large), mais pas injective.
- (e) Faux. La fonction constante $f: \mathbb{R} \to \mathbb{R}$ définie par f(x) = -14 est croissante (au sens large), mais pas surjective.
- (f) Vrai. Supposons que $f(x_1) = f(x_2)$. Si $x_1 \neq x_2$, alors $x_1 < x_2$ ou $x_1 > x_2$. Dans le premier cas, on a $f(x_1) < f(x_2)$, contredisant que $f(x_1) = f(x_2)$. Dans le second cas, on a $f(x_1) > f(x_2)$, contredisant que $f(x_1) = f(x_2)$. Donc on ne peut pas avoir $x_1 \neq x_2$, d'où $x_1 = x_2$, et f est injective.

(g) Faux. On peut par exemple considérer

$$f \colon \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto f(x) = \begin{cases} \frac{1}{1-x} & \text{si } x < 0 \\ x+1 & \text{si } x \ge 0. \end{cases}$$

Elle n'est pas surjective, car f(x) > 0 pour tout $x \in \mathbb{R}$. En revanche elle est strictement croissante, car si $0 \le x < y$, alors f(x) = x + 1 < y + 1 = f(y), si $x < 0 \le y$, alors f(x) < 1 et $f(y) \ge 1$, donc f(x) < f(y), et si $x < y \le 0$, on a 1 - x > 1 - y d'où $f(x) = \frac{1}{1 - x} < \frac{1}{1 - y} = f(y)$.

(On peut également simplement prendre $f(x) = e^x$, mais on a besoin d'outils plus avancés vus plus tard en cours pour démontrer rigoureusement qu'elle est strictement croissante sans être surjective).