Remarque sur les corrigés

Lire une solution, même partielle, d'un exercice sans avoir essayé plusieurs $heures^1$ de le résoudre est presque totalement inutile. Faire un exercice en ayant la solution sous les yeux est $beaucoup \ plus \ facile$, et ne prépare que très mal à un examen (qui se fait sans solutions).

Par conséquent, la lecture du présent corrigé est déconseillée, et se fait à vos risques et périls.

^{1. (}même parfois plusieurs jours)

EPFL - Sections SIE/GC/SC

Solution 1.

(a) On a

$$\frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \frac{f(x)g(x) - f(x_0)g(x) + f(x_0)g(x) - f(x_0)g(x_0)}{x - x_0}$$

$$= \frac{f(x) - f(x_0)}{x - x_0}g(x) + f(x_0)\frac{g(x) - g(x_0)}{x - x_0}$$

$$\longrightarrow f'(x_0)g(x_0) + f(x_0)g'(x_0) \quad \text{lorsque } x \to x_0.$$

On utilise en particulier le fait que g est continue en x_0 car dérivable en x_0 .

(b) La dérivée de $\frac{1}{x}$ est $-\frac{1}{x^2}$, donc celle de $\frac{1}{g(x)}$ est $-\frac{g'(x)}{g(x)^2}$ (règle des composées). On applique alors la règle du produit à $\frac{f}{g} = f \cdot \frac{1}{g}$ pour démontrer la formule.

Solution 2.

(a)
$$f'(x) = \frac{\cos(x)^2 + \sin(x)^2}{\cos(x)^2} = \frac{1}{\cos(x)^2} = 1 + \tan(x)^2$$
, $D(f) = D(f') = \mathbb{R} \setminus \{\cos(x) = 0\} = \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi \mid k \in \mathbb{Z}\}$.

(b)
$$f'(x) = \frac{-\sin(x)^2 - \cos(x)^2}{\sin(x)^2} = \frac{-1}{\sin(x)^2} = -(1 + \cot(x)^2), D(f) = D(f') = \mathbb{R} \setminus \{\sin(x) = 0\} = \mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\}.$$

(c)
$$f'(x) = \frac{5(3x^2 - 1) - 6x(5x + 2)}{(3x^2 - 1)^2} = -\frac{15x^2 + 12x + 5}{(3x^2 - 1)^2}$$
, et $D(f) = D(f') = \mathbb{R} \setminus \left\{ -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right\}$.

(d)
$$f'(x) = \frac{2x\sqrt{1-x^2}-x^2\frac{1}{2\sqrt{1-x^2}}(-2x)}{1-x^2} = \frac{x(2-x^2)}{(1-x^2)^{3/2}}; D(f) = D(f') =]-1,1[$$

(e)
$$f'(x) = 2\sin(x)\cos(x) \cdot \cos(x^2) + \sin^2(x) \cdot (-\sin(x^2)) \cdot 2x$$

= $2\sin(x)(\cos(x)\cos(x^2) - x\sin(x)\sin(x^2))$; $D(f) = D(f') = \mathbb{R}$.

(f)
$$f'(x) = 9(1 + \tan^2 x)\cos(2x) - 2(3 + 9\tan x)\sin(2x); D(f) = D(f') = \mathbb{R} \setminus \{\cos(x) = 0\} = \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi \mid k \in \mathbb{Z}\}.$$

(g)
$$f'(x) = \left(\frac{\sqrt{x+3}}{x}\right) \left(\frac{x+6}{2(x+3)^{3/2}}\right); D(f) = D(f') =]0, \infty[.$$

(h)
$$f'(x) = \frac{d}{dx} 2e^x (x^2 - 1)^{-1} = 2e^x (x^2 - 1)^{-1} - 2e^x (x^2 - 1)^{-2} (2x)$$
; $D(f) = D(f') = \mathbb{R} \setminus \{-1, 1\}$.

(i) Si x > 0 ou x < 0, on calcule f'(x) à l'aide de la formule du produit des dérivées. Et pour x = 0, on revient à la définition de dérivée avec limites, et on trouve que la limite vaut 0. Donc $f'(x) = \operatorname{sgn}(x)(\sin(x) + x\cos(x))$ où $\operatorname{sgn}(x)$ vaut 1 si x > 0, -1 si x < 0 et 0 si x = 0. On a $D(f) = D(f') = \mathbb{R}$.

- (j) Même idée qu'au point précédent, pas de problème si $x \neq 0$, et pour x = 0, on calcule la limite dans la définition de dérivée, pour trouver 0. Ainsi f'(x) = 3|x|x, et $D(f) = D(f') = \mathbb{R}$.
- (k) $f'(x) = \frac{1}{\sqrt{1-x^2}}$ si $x \in]-1,1[$ (vu en cours). On a D(f) = [-1,1] et D(f') = [-1,1[.
- (l) On utilise la proposition du cours. Soit $g(x) = \cos(x)$ sur $[0, \pi]$. Alors $g'(x) = -\sin(x)$ est non nulle sur $[0, \pi]$. On trouve donc

$$\arccos'(x) = (g^{-1})'(x) = \frac{1}{g'(g^{-1}(x))} = \frac{-1}{\sin(\arccos(x))}.$$

Comme $\sin(x) = \sqrt{1 - \cos(x)^2}$ si $x \in]0, \pi[$, on trouve

$$\arccos'(x) = \frac{-1}{\sqrt{1 - \cos(\arccos(x))^2}} = \frac{-1}{\sqrt{1 - x^2}}.$$

On a D(f) = [-1, 1] et D(f') =]-1, 1[.

(m) Même idée qu'au point d'avant, si $g(x) = \tan(x)$ sur $]-\frac{\pi}{2}, \frac{\pi}{2}[$, alors $g'(x) = 1 + \tan(x)^2 \neq 0$ si $x \in]-\frac{\pi}{2}, \frac{\pi}{2}[$. Donc

$$\arctan'(x) = \frac{1}{1 + \tan(\arctan(x))^2} = \frac{1}{1 + x^2}.$$

On a $D(f) = D(f') = \mathbb{R}$.

(n) On a

$$f'(x) = \frac{1}{2\sqrt{\sin\left(\sqrt{\sin(x)}\right)}}\cos\left(\sqrt{\sin(x)}\right)\frac{1}{2\sqrt{\sin(x)}}\cos(x)$$
$$= \frac{\cos\left(\sqrt{\sin(x)}\right)\cos(x)}{4\sqrt{\sin\left(\sqrt{\sin(x)}\right)\sin(x)}}.$$

Pour le domaine, on doit avoir $\sin(x) \geq 0$ et $\sin(\sqrt{\sin(x)}) \geq 0$ pour que les expressions sous la racine soient ≥ 0 . La première se traduit par $x \in \bigcup_{k \in \mathbb{Z}} [2k\pi, (2k+1)\pi]$ (l'union de $[0,\pi]$ et de tous ses translatés par des multiples entiers de 2π). Pour ces valeurs, on $\sin(x) \in [0,1]$, donc $\sqrt{\sin(x)} \geq 0$ et la deuxième condition est vérifiée. Ainsi $D(f) = \bigcup_{k \in \mathbb{Z}} [2k\pi, (2k+1)\pi]$.

Pour D(f'), les expressions sous la racines doivent encore être non nulles. Donc $D(f') = \bigcup_{k \in \mathbb{Z}} 2k\pi, (2k+1)\pi[$.

- (o) $f'(x) = \frac{3}{5}(2x^4 + e^{-(4x+3)})^{-2/5}(8x^3 4e^{-(4x+3)})$. $D(f) = D(f') = \mathbb{R}$.
- (p) $f'(x) = e^{\cos(4x)}\log(4)(\cos(x) 4\sin(4x)\sin(x))$). $D(f) = D(f') = \mathbb{R}$.
- (q) Par définition, $x^x = e^{\log(x)x}$ donc $f'(x) = x^x(1 + \log(x))$. On a $D(f) = D(f') = [0, +\infty[= \mathbb{R}_+^*]$.

(r) On a
$$f(x) = x^{e^{\log(x)x}} = e^{\log(x)e^{\log(x)x}}$$
, donc $f'(x) = x^{x^x}(x^{-1}x^x + \log(x)x^x(1 + \log(x))) = x^{x^x + x - 1}(1 + x\log(x) + x\log(x)^2)$. $D(f) = D(f') =]0, +\infty[= \mathbb{R}_+^*.$

Solution 3.

(a) Si k=0, f(x)=1 et donc $f^{(n)}(x)=0$ pour tout n. Si k>0, on trouve

$$f^{(n)}(x) = \begin{cases} k(k-1)\cdots(k-n+1)x^{k-n} & \text{si } n \le k \\ 0 & \text{si } n > k. \end{cases}$$

Et si k < 0, on a $f^{(n)}(x) = k(k-1) \cdots (k-n+1)x^{k-n}$ pour tout n.

(b) On commence par calculer les quatre premières dérivées de f:

$$f'(x) = 2\cos(2x) - 2\sin(x) \qquad f''(x) = -4\sin(2x) - 2\cos(x)$$

$$f'''(x) = -8\cos(2x) + 2\sin(x) \qquad f^{(4)}(x) = 16\sin(2x) + 2\cos(x)$$

Il faut donc distinguer deux cas selon la parité de $n \in \mathbb{N}^*$:

$$f^{(n)}(x) = \begin{cases} (-1)^{\frac{n}{2}} (2^n \sin(2x) + 2\cos(x)), & n \text{ pair} \\ (-1)^{\frac{n-1}{2}} (2^n \cos(2x) - 2\sin(x)), & n \text{ impair.} \end{cases}$$

(c) On a $f'(x) = \frac{1}{x} = x^{-1}$, d'où, en utilisant le (a), dès que $n \ge 2$,

$$f^{(n)}(x) = (-1)(-2)\cdots(-1 - (n-1) + 1)x^{-1-(n-1)} = \frac{(-1)^{n-1}(n-1)!}{r^n}.$$

Solution 4.

Si f(x) > 0, alors $\log(f(x))$ est bien défini. En utilisant la règle de dérivation des composées, on trouve $(\log(f(x)))' = \frac{1}{f(x)}f'(x)$, d'où $f'(x) = (\log(f(x)))'f(x)$.

Pour f'(x), on remarque que

$$\log(f(x)) = 2\log(x^2 + 1) + 3\log(x^6 + 2) + \log(x^4 + 3),$$

d'où

$$(\log(f(x)))' = \frac{4x}{x^2 + 1} + \frac{18x^5}{x^6 + 2} + \frac{4x^3}{x^4 + 3}$$

et donc

$$f'(x) = 4x(x^{2} + 1)(x^{6} + 2)^{3}(x^{4} + 3)$$

$$+ 18x^{5}(x^{2} + 1)^{2}(x^{6} + 2)^{2}(x^{4} + 3) + 4x^{3}(x^{2} + 1)^{2}(x^{6} + 2)^{3}$$

$$= 2x(x^{2} + 1)(x^{6} + 2)^{2}(13x^{10} + 11x^{8} + 33x^{6} + 35x^{4} + 4x^{2} + 12).$$

Solution 5.

Lorsque $x \neq 1$, f(x) est un polynôme, donc dérivable. En x = 1, il faut calculer la dérivée à gauche et à droite, et vérifier qu'elles coïncident. On a

$$f'_{\text{gauche}}(1) = \lim_{x \uparrow 1} \frac{f(x) - f(1)}{x - 1} = (x^2 - x + 3)'(1) = 2 \cdot 1 - 1 = 1.$$

En outre,

$$f'_{\text{droite}}(1) = \lim_{x \downarrow 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \downarrow 1} \frac{\alpha x + \beta - 3}{x - 1}.$$

Si $\alpha + \beta - 3 \neq 0$, alors cette limite vaut $\frac{c}{0^+} = \pm \infty$, donc la fonction n'est pas dérivable en 1 (elle n'est même pas continue!). Donc $\alpha + \beta - 3 = 0$, et donc

$$f'_{\text{droite}}(1) = \lim_{x \downarrow 1} \frac{\alpha x + \beta - 3}{x - 1} = \lim_{x \downarrow 1} \frac{\alpha x - \alpha + \overbrace{\alpha + \beta - 3}^{=0}}{x - 1} = \lim_{x \downarrow 1} \frac{\alpha (x - 1)}{x - 1} = \alpha.$$

Ainsi f'(1) existe si et seulement si $\alpha = 1$ et $\alpha + \beta - 3 = 0$ i.e., $\alpha = 1$ et $\beta = 2$.

Solution 6.

La fonction est continue sur [1,3] et on a $f(-1)=1-\frac{1}{5^5}>0$ et $f(3)=\frac{1}{5^3}-1<0$. Par le TVI, il existe $c\in]-1,3[$ tel que f(c)=0. Pour l'unicité, on remarque que la fonction est strictement négative dès que x<-2, et strictement positive dès que x>4; il n'y a donc pas de zéros ici. Pour $x\in]-2,4[$, on calcule

$$f'(x) = -\left(\frac{3}{(x+2)^4} + \frac{5}{(x-4)^6}\right) < 0.$$

La fonction est donc strictement décroissante dans cette région, donc injective (car continue), et il suit qu'il ne peut y avoir qu'au plus un zéro ici. Il y a donc exactement un zéro.

Solution 7.

(a) \exp_a est la composée $g \circ f$ des fonctions bijectives $f(x) = \log(a) \cdot x$ (linéaire) et $g(x) = \exp(x)$, c'est donc une fonction bijective. On vérifie que

$$\exp_a(\log_a(x)) = \exp\left(\log(a) \cdot \frac{\log(x)}{\log(a)}\right) = x$$
 et

$$\log_a(\exp_a(x)) = \frac{\log(\exp(\log(a) \cdot x))}{\log(a)} = \frac{\log(a) \cdot x}{\log(a)} = x.$$

 \log_a est donc bien la réciproque de \exp_a .

(b) On utilise toutes les propriétés de exp, qui sont encore vraies pour \exp_a . On montre par récurrence que $\exp_a(n) = a^n$ pour tout $n \in \mathbb{N}^*$. Init: $\exp_a(1) = \exp(\log(a) \cdot 1) = a^1$. Pas de rec: $\exp_a(n+1) = \exp_a(n) \cdot \exp_a(1) = a^n \cdot a = a^{n+1}$. Ensuite, on a, pour tous $n \in \mathbb{N}^*$,

$$\exp_a(-n) = \frac{1}{\exp_a(n)} = \frac{1}{a^n} = a^{-n}.$$

Finalement, si $\frac{p}{q} \in \mathbb{Q}$, on a

$$\left(\exp_a\left(\frac{p}{q}\right)\right)^q = \exp_a\left(\frac{p}{q} + \dots + \frac{p}{q}\right) = \exp_a(p) = a^p \overset{(\dots)^{1/q}}{\Rightarrow} \exp_a\left(\frac{p}{q}\right) = a^{\frac{p}{q}}.$$

- (c) Simple application de la règle de dérivées des composées.
- (d) On vérifie que la dérivée est > 0 si a > 1 et < 0 si a < 1.

(e) On a
$$\log_a(b^x) = \frac{\log(\exp(\log(b) \cdot x))}{\log(a)} = x \cdot \frac{\log(b)}{\log(a)} = x \cdot \log_a(b)$$

(f) On a
$$\frac{\log_a(x)}{\log_a(b)} = \frac{\log(x)}{\log(a)} \cdot \left(\frac{\log(b)}{\log(a)}\right)^{-1} = \frac{\log(x)}{\log(b)} = \log_b(x).$$

Solution 8.

(a) On pose $h(x) = f(x) - \left(f(a) + \frac{f(b) - f(a)}{g(b) - g(a)}(g(x) - g(a))\right)$. On calcule h(a) = 0 et h(b) = 0. Par le théorème de Rolle, il existe $u \in]a, b[$ avec h'(u) = 0. Or

$$h'(u) = 0 \Leftrightarrow f'(u) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(u) = 0,$$

et le TAF généralisé en découle.

(b) On applique le TAF généralisé avec la fonction g(x) = x.