Série 9

1. Déterminer dans chaque cas les domaines (maximaux) D(f), D(f'), et la fonction dérivée f'(x):

(a)
$$f(x) = |x|$$
; (b) $f(x) = x|x|$; (c) $f(x) = \sqrt{x\sqrt{x\sqrt{x}}}$; (d) $f(x) = \sqrt[3]{\left(1 - \sqrt{x^3}\right)^2}$.

2. Pour $\alpha, \beta \in \mathbb{N}^*$, on définit $f(x) = \begin{cases} x^{\alpha} \sin(1/x^{\beta}), & x \neq 0, \\ 0 & x = 0. \end{cases}$

Déterminer pour quelles valeurs de α, β on a : (a) f dérivable sur \mathbb{R} ; (b) $f \in C^1(\mathbb{R})$.

- 3. Etudier la dérivabilité de la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \begin{cases} x^3 + 1, & x \in \mathbb{Q}, \\ x^2 + x, & x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$
- 4. Déterminer $\alpha, \beta \in \mathbb{R}$ tels que la fonction $f(x) = \begin{cases} x^2 x + 3, & x \leq 1, \\ \alpha x + \beta, & x > 1, \end{cases}$ soit dérivable partout. A-t-on alors $f \in C^1(\mathbb{R})$? Esquisser le graphe de f.
- 5. Démontrer les inégalités suivantes :

(a)
$$xe^x + 1 \ge e^x \ge x + 1 \quad \forall x \in \mathbb{R};$$
 (b) $x \ge \ln(1+x) \ge \frac{x}{x+1} \quad \forall x > -1;$

(c)
$$\sin x > x \cos x \quad \forall x \in (0, 4\pi/3);$$
 (d) $\tan x < \frac{x}{1-x} \quad \forall x \in (0, 1);$

(e)
$$x - \frac{x^3}{3!} < \sin x < x - \frac{x^3}{3!} + \frac{x^5}{5!} \quad \forall x > 0;$$
 (f) $1 - \frac{x^2}{2!} < \cos x < 1 - \frac{x^2}{2!} + \frac{x^4}{4!} \quad \forall x > 0.$

Indication : Pour chaque inégalité, se ramener à l'étude du signe d'une fonction, étude que l'on mènera à bien par le calcul différentiel.

6. Calculer les limites suivantes :

(a)
$$\lim_{x\to 0} \frac{x-\sin x}{x^3}$$
; (b) $\lim_{x\to 0} \frac{x-\tan x}{x^3}$; (c) $\lim_{x\to 0} \frac{x-\arcsin x}{x^3}$; (d) $\lim_{x\to 0} \frac{x-\ln(1+x)}{x^2}$;

(e)
$$\lim_{x \to 0} (1+x)^{1/x}$$
; (f) $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x$; (g) $\lim_{x \to 0} \frac{x}{e^{1/x}}$; (h) $\lim_{x \to 0} \left(\frac{\sin x}{x}\right)^{1/x^2}$.

7. Calculer les limites suivantes, où $\alpha \in \mathbb{R}$ et a > 0:

(a)
$$\lim_{x\to\infty} \frac{\ln x}{x^{\alpha}}$$
; (b) $\lim_{x\to0^+} x^{\alpha} \ln x$; (c) $\lim_{x\to0^+} x^{x^{\alpha}}$; (d) $\lim_{x\to\infty} \frac{x^{\alpha}}{a^x}$; (e) $\lim_{x\to0} \frac{a^x-1}{x}$; (f) $\lim_{x\to0} \frac{a^x-e^x}{x}$.

- 8. Soit f une fonction continue en $a \in \mathbb{R}$ et dérivable dans un voisinage pointé de a. Prouver que, si $\lim_{x\to a} f'(x)$ existe, alors f est dérivable en a et $f'(a) = \lim_{x\to a} f'(x)$.
- 9. Soit $f: \mathbb{R} \to \mathbb{R}$. On suppose qu'il existe $F: \mathbb{R} \to \mathbb{R}$ telle que f = F'. Montrer que f satisfait la propriété de la valeur intermédiaire sur tout intervalle $[a, b] \subset \mathbb{R}$. Indication: Fixer g entre f(a) et f(b) et considérer la fonction $\varphi(x) := F(x) yx$.