Série 7

- 1. (\star) Soit $f:(-1,1)\setminus\{0\}\to(0,\infty)$ telle que $\lim_{x\to 0}\left(f(x)+1/f(x)\right)=2$. Montrer que $\lim_{x\to 0}f(x)=1$.
- 2. Prouver que la fonction $f: \mathbb{R}^* \to \mathbb{R}$ définie par $f(x) = \frac{1 \cos x}{x^2}$ est prolongeable par continuité en x = 0, et donner son prolongement \hat{f} .
- 3. Déterminer dans chaque cas si la fonction f est prolongeable par continuité et, si oui, donner le prolongement associé \hat{f} :

(a)
$$f(x) = \frac{|x|(x+1) + x}{x^2(x+1)}$$
, $\forall x \in \mathbb{R} \setminus \{-1, 0\}$; (b) $f(x) = \frac{x\sqrt{\cos^2 x - 4\cos x + 3}}{|x|\sin x}$, $\forall x \in (-\pi, \pi) \setminus \{0\}$.

- 4. Prouver que la fonction indicatrice de \mathbb{Q} , $\chi_{\mathbb{Q}}(x) = \begin{cases} 1 & \text{si } x \in \mathbb{Q}, \\ 0 & \text{si } x \in \mathbb{R} \setminus \mathbb{Q}, \end{cases}$ est discontinue en tout point. Indication: Pour chaque $a \in \mathbb{R}$ considérer deux suites $(x_n) \subset \mathbb{Q}$ et $(y_n) \subset \mathbb{R} \setminus \mathbb{Q}$ qui convergent vers a.
- 5. Etudier la continuité de la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \begin{cases} x^3 + 1, & x \in \mathbb{Q}, \\ x^2 + x, & x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$
- 6. Prouver que, si $f:[a,\infty)\to\mathbb{R}$ est continue et $\lim_{x\to\infty}f(x)$ existe, alors f est bornée sur $[a,\infty)$.
- 7. Donner un exemple de fonction bornée sur [0,1] qui n'atteint ni son infimum ni son supremum.
- 8. On dit qu'une fonction $f:[a,b] \to \mathbb{R}$ a la propriété de la valeur intermédiaire si f prend toutes les valeurs comprises entre f(a) et f(b). Donner un exemple de fonction $f:[0,1] \to \mathbb{R}$ qui ait la propriété de la valeur intermédiaire mais qui ne soit pas continue sur [0,1].
- 9. Montrer que si $f:[a,b] \to \mathbb{R}$ est continue, alors $|f|:[a,b] \to \mathbb{R}$ l'est aussi. Montrer que la réciproque est fausse.
- 10. Montrer que chacune des équations suivantes possède une solution dans \mathbb{R} :

(a)
$$x^2 - \frac{1}{x} = 1$$
, (b) $e^x = x + 2$, (c) $x + e^x + \ln(x) + \sin(x) = 0$, (d) $P(x) = 0$, où $P \in \mathbb{R}[x]$ est un polynôme de degré impair.

Indication: Utiliser le théorème de la valeur intermédiaire.

- 11. Considérons une fonction continue $f:[a,b]\to [a,b]$. Prouver qu'il existe $c\in [a,b]$ tel que f(c)=c.
- 12. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue telle que $\operatorname{Im}(f) \subset \mathbb{R} \setminus \mathbb{Q}$. Prouver que f est constante.
- 13. Soient $f,g:\mathbb{R}\to\mathbb{R}$ deux fonctions continues. Prouver que :
 - (a) $f(x) \ge g(x), \ \forall x \in \mathbb{Q} \implies f(x) \ge g(x), \ \forall x \in \mathbb{R};$
 - (b) $f(x) = g(x), \ \forall x \in \mathbb{Q} \implies f(x) = g(x), \ \forall x \in \mathbb{R}.$
- 14. (*) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction non constante, continue en un point $x_0 \in \mathbb{R}$, et telle que

$$f(x+y) = f(x)f(y), \quad \forall x, y \in \mathbb{R}.$$

Prouver qu'il existe a > 0 tel que $f(x) = a^x$, pour tout $x \in \mathbb{R}$.

Indication: Commencer par montrer que f(0) = 1, $f(-x) = f(x)^{-1}$ et $f(n) = f(1)^n$, $n \in \mathbb{N}$.