Série 5

- 1. Soit $(x_n)_{n\in\mathbb{N}}\subset\mathbb{Z}$ et $(y_n)_{n\in\mathbb{N}}\subset\mathbb{Z}^*$ satisfaisant $\lim_{n\to\infty}\frac{x_n}{y_n}=\ell\in\mathbb{R}\setminus\mathbb{Q}$. Prouver que $\lim_{n\to\infty}|y_n|=\infty$.
- 2. (a) Montrer que la suite de terme général $x_n = \frac{(-1)^{n-1}}{n}, n \ge 1$, est de Cauchy.
 - (b) Montrer que la suite de terme général $x_n = (-1)^{n-1}$, $n \ge 1$, n'est pas de Cauchy.
 - (c) Montrer que la suite récurrente $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ définie par $x_{n+1}=\frac{x_n+1}{x_n+2},\ n\geq 0,\ x_0=1,$ est de Cauchy, et calculer sa limite.
- 3. (\star) Montrer que la suite $(x_n)_{n\in\mathbb{N}^*}$ de terme général $x_n=\sin(\ln(n))$ satisfait $x_{n+1}-x_n\to 0$ quand $n \to \infty$, mais n'est pas convergente

Indications: Esquisser le graphe de la fonction $f(x) = \sin(\ln(x)), x \ge 1$, pour saisir le phénomène. Construire deux sous-suites (n_k) et (n'_k) telles que $x_{n_k} \ge \sqrt{2}/2$ et $x_{n'_k} \le -\sqrt{2}/2$ pour tout $k \in \mathbb{N}^*$.

4. Calculer dans chaque cas la somme de la série, à l'aide de la suite des sommes partielles :

(a)
$$\sum_{n\geq 1} \frac{1}{n(n+1)}$$
 (b) $\sum_{n\geq 1} \frac{1}{n(n+3)}$ (c) $\sum_{n\geq 2} \frac{2n-1}{n^2(n-1)^2}$ (d) $\sum_{n\geq 1} na^n$, $\forall a\in (-1,1)$

Indication: Pour (d), calculer tout d'abord $(1-a)s_n$, où s_n est la somme des n premiers termes.

- 5. (a) Prouver qu'une série de nombres positifs converge si et seulement si la suite de ses sommes partielles est bornée supérieurement.
 - (b) En déduire que, pour tout $a \in (0,1)$ et $\alpha \in \mathbb{R}$, la série $\sum_{n \geq 1} n^{\alpha} a^n$ est convergente.
- 6. (a) Prouver la convergence de la suite $(x_n)_{n\in\mathbb{N}^*}\subset\mathbb{R}$ définie par

$$x_n = \sum_{k=1}^n \frac{1}{k} - \ln(n).$$

Indication: Montrer que (x_n) est décroissante. Puis montrer que $x_n>0$ pour tout $n\geq 1$ en étudiant la monotonie de $y_n := x_n - \frac{1}{n}$. Ces résultats reposent sur l'encadrement $(1 + \frac{1}{n})^n \le e \le (1 + \frac{1}{n})^{n+1}$.

(b) Déduire du point (a) que

$$\sum_{n>1} \frac{(-1)^{n-1}}{n} = \ln(2).$$

- 7. Etudier la convergence de la série $\sum_{n\geq 0} \frac{2+(-1)^n}{2^n}$ en appliquant successivement le critère de d'Alembert et celui de la racine. Conclusion? (Voir aussi série 4, exercice 4 (a).)
- 8. $(\star\star)$ On dit qu'une série $\sum a_n$ est conditionnellement convergente ssi $\sum a_n$ existe mais $\sum |a_n| = +\infty$. On appelle réarrangement des termes de la série toute permutation $\sigma: \mathbb{N} \to \mathbb{N}$.

Démontrer le théorème de Riemann: Soit $\sum a_n$ une série conditionnellement convergente, et soit $\ell \in \mathbb{R}$. Alors il existe un réarrangement σ des termes de $\sum a_n$ tel que $\sum a_{\sigma(n)} = \ell$.

Indications : (i) Définir $a_n^{\pm} := \frac{1}{2}(|a_n| \pm a_n)$ et montrer, tout d'abord, que $\sum a_n^- = \sum a_n^+ = +\infty$. (ii) Il peut être instructif de considérer le cas particulier de la série $\sum_{n\geq 1} \frac{(-1)^{n-1}}{n}$.