Série 4B (*)

- 1. Preuve alternative du théorème de Bolzano-Weierstrass: prouver le théorème en montrant que toute suite réelle possède une sous-suite monotone.
- 2. Soit $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$. On dit que $x\in\mathbb{R}\cup\{\pm\infty\}$ est un point d'accumulation de (x_n) s'il existe une sous-suite de (x_{n_k}) telle que $x_{n_k} \to x$ lorsque $k \to \infty$. On note $\mathrm{acc}(x_n) \subset \mathbb{R} \cup \{\pm \infty\}$ l'ensemble des points d'accumulation de (x_n) . On définit alors $\liminf_{n\to\infty} x_n$ et $\limsup_{n\to\infty} x_n$ de la façon suivante.

Si $acc(x_n) \subset \mathbb{R}$,

$$\liminf_{n \to \infty} x_n := \inf \operatorname{acc}(x_n), \quad \limsup_{n \to \infty} x_n := \sup \operatorname{acc}(x_n).$$

Ces définitions s'appliquent aux suites bornées. Afin de pouvoir aussi considérer des suites non-bornées, et donc des liminf et lim sup infinies, nous la complétons comme suit.

Si
$$-\infty \in acc(x_n)$$
, $\liminf_{n \to \infty} x_n = -\infty$. Si $+\infty \in acc(x_n)$, $\limsup_{n \to \infty} x_n = +\infty$.

Si
$$\operatorname{acc}(x_n) = \{-\infty\}$$
, $\limsup x_n = \liminf_{n \to \infty} x_n = -\infty$

Si
$$\operatorname{acc}(x_n) = \{-\infty\}$$
, $\limsup_{n \to \infty} x_n = \liminf_{n \to \infty} x_n = -\infty$.
Si $\operatorname{acc}(x_n) = \{+\infty\}$, $\liminf_{n \to \infty} x_n = \limsup_{n \to \infty} x_n = +\infty$.

Pour chacune des suites suivantes, déterminer $\liminf x_n$ et $\limsup x_n$:

(i)
$$x_n = \frac{(-1)^n}{1 + 1/n}$$
, (ii) $x_n = \sin\left(n\frac{\pi}{4}\right)\cos\left(n\frac{\pi}{4}\right)$, (iii) $x_n = \sum_{k=0}^n (-1)^k$.

Démontrer les résultats suivants, pour toutes suites $(x_n), (y_n) \subset \mathbb{R}$:

- (a) Si (x_n) est bornée, alors $\liminf_{n\to\infty} x_n$ et $\limsup_{n\to\infty} x_n$ sont finis et $\liminf_{n\to\infty} x_n \le \limsup_{n\to\infty} x_n$. (b) (x_n) converge ssi $\liminf_{n\to\infty} x_n$, $\limsup_{n\to\infty} x_n$ sont finies et $\liminf_{n\to\infty} x_n = \limsup_{n\to\infty} x_n$. Dans ce cas, $\lim_{n\to\infty} x_n = \liminf_{n\to\infty} x_n = \limsup_{n\to\infty} x_n$.
- (c) Si $x_n \leq y_n$ pour tout $n \in \mathbb{N}$, alors $\liminf_{n \to \infty} x_n \leq \liminf_{n \to \infty} y_n$ et $\limsup_{n \to \infty} x_n \leq \limsup_{n \to \infty} y_n$.
- 3. Nous avons vu au cours que $\ell := \sum_{n \ge 0} \frac{1}{n!} < \infty$. Le but de cet exercice est de montrer que $\ell = e$. On pose

$$x_n = \left(1 + \frac{1}{n}\right)^n$$
 et $s_n = \sum_{k=0}^n \frac{1}{k!}$.

Nous savons aussi du cours que $x_n \leq s_n$ pour tout $n \in \mathbb{N}$, (x_n) est croissante et $x_n \to e$.

(a) Montrer que

$$\limsup_{n \to \infty} x_n \le \ell.$$

(b) Montrer que

$$\liminf_{n \to \infty} x_n \ge s_N, \quad \forall N \in \mathbb{N}.$$

- (c) Conclure.
- 4. Posons à nouveau $s_n = \sum_{i=1}^n \frac{1}{k!}$.
 - (a) Montrer que $0 < e s_n < \frac{1}{n! \, n}$. Estimer l'erreur commise dans l'approximation $e \approx s_{10}$.
 - (b) En utilisant les inégalités du point (a), prouver par l'absurde que $e \notin \mathbb{Q}$.