Série 2

- 1. Montrer que, pour tout $a, b \in \mathbb{R}$, a < b, il existe $c \in \mathbb{Q}$ tel que a < c < b.
- 2. Résolution de $x^2=2$ dans \mathbb{R} . Soit $A=\{x\in\mathbb{R}\,;\,x^2\leq 2\}$ et $s=\sup A$. Montrer que $s^2=2$. Indication: Prouver par l'absurde que $s^2<2$ et $s^2>2$ sont impossibles. Si $s^2<2$, construire x>s tel que $x^2\leq 2$.
- 3. Pour chacun des sous-ensembles $A \subset \mathbb{R}$ donnés, dire si A est majoré, minoré, borné. Si A est majoré (resp. minoré), déterminer sup A (resp. inf A). Justifier rigoureusement vos réponses.
 - (a) $A = \{x \in \mathbb{R} ; 0 \le x \le 1\};$
 - (b) $A = \{x \in \mathbb{Q} ; 0 < x < 1\};$
 - (c) $A = \{x \in \mathbb{Q} ; x \le \sqrt{2}\};$
 - (d) $A = \{x_n = 1/n ; n \in \mathbb{N}^*\}.$
- 4. (a) Soit $A \subset \mathbb{R}$ non vide. Montrer que si A est majoré, alors $\sup A$ est unique. De même, si A est minoré, inf A est unique.
 - (b) Soit $A, B \subset \mathbb{R}$ non vides. On définit $A + B := \{a + b ; a \in A, b \in B\}$ et $-A := \{-a ; a \in A\}$. Démontrer que :
 - (i) $\sup(-A) = -\inf(A)$, $\inf(-A) = -\sup(A)$;
 - (ii) $\sup(A+B) = \sup(A) + \sup(B)$, $\inf(A+B) = \inf(A) + \inf(B)$.
 - (c) Prouver que $A \subset \mathbb{R}$ est borné ssi $\{|x|; x \in A\}$ est borné.
- 5. (a) Soit $A_1, A_2, \ldots, A_n, \ldots$ une collection dénombrable de sous-ensembles bornés de \mathbb{R} . Déterminer si, en général, les ensembles

$$\bigcap_{n=1}^{\infty} A_n \quad \text{et} \quad \bigcup_{n=1}^{\infty} A_n$$

sont bornés. Justifier rigoureusement votre réponse par une démonstration ou un contre-exemple.

- (b) Montrer qu'un ensemble $A \subset \mathbb{R}$ fini est borné. Donner inf A et sup A.
- 6. (a) Soit une fonction $f: A \longrightarrow B$, où A et B sont des ensembles arbitraires. Que peut-on dire de f si, pour tout $y \in B$, l'équation f(x) = y a :
 - (i) au plus une solution $x \in A$?
 - (ii) au moins une solution $x \in A$?
 - (iii) une unique solution $x \in A$?
 - (b) Montrer que la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par

$$f(x) = ax^2 + bx + c$$
, avec $a \in \mathbb{R}^*$, $b, c \in \mathbb{R}$,

n'est ni injective ni surjective.

(c) Montrer que la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) = x^3 + x$, est injective. Est-elle aussi surjective? Contrainte: Il est interdit d'utiliser la notion de dérivée pour résoudre l'exercice!