Série 1

- 1. Démontrer (par récurrence) les propositions suivantes :
 - (a) (i) $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$, $\forall n \in \mathbb{N}^*$, (ii) $\left(\sum_{k=1}^{n} k\right)^2 = \sum_{k=1}^{n} k^3$, $\forall n \in \mathbb{N}^*$;
 - (b) $n! \ge 2n 1$, $\forall n \ge 3$;
 - (c) $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}, \quad \forall n \in \mathbb{N}^*$ (binôme de Newton).

Indication: Prouver et utiliser la relation $\binom{n}{i-1} + \binom{n}{i} = \binom{n+1}{i}, \ 1 \le i \le n$. On rappelle que $\binom{n}{k} = \frac{n!}{k!(n-k)!}, \ 0 \le k \le n$, où $n! = n \cdot (n-1) \cdot \dots \cdot 2 \cdot 1$ pour $n \in \mathbb{N}^*$ et 0! = 1.

- 2. Démontrer, pour tout $x, y \in \mathbb{R}$, les propriétés suivantes de la valeur absolue :
 - (a) |xy| = |x||y|;
 - (b) $|x| = \sqrt{x^2}$;
 - (c) $|x+y| \le |x| + |y|$;
 - (d) $|x y| \ge ||x| |y||$;
 - (e) $|x| = x \operatorname{sgn}(x)$ si $x \neq 0$.
- 3. (a) Résoudre dans \mathbb{R} l'équation $\sqrt{2-x}=x$.
 - (b) Soit une équation de la forme $E(x)=0, x\in D\subset \mathbb{R}$ (le domaine où l'expression E(x) est définie), et S l'ensemble de ses solutions. Que peut-on conclure après un raisonnement du type

$$E(x) = 0, x \in D \implies \dots \text{ (calculs) } \dots \implies x \in A?$$

Et s'il on a partout des équivalences au lieu des implications?

4. Résoudre dans $\mathbb R$ les inéquations suivantes :

(a)
$$\left| \frac{x-1}{x+1} \right| < x-1;$$

(b)
$$|x^2 + 3x - 1| \ge x^2 + x + 1$$
.

5. Prouver que l'équation $x^2 = 3$ n'a pas de solution dans $\mathbb{Q}_+ := \{r \in \mathbb{Q} : r \geq 0\}$. Indication: Commencer par démontrer que, pour $n \in \mathbb{N}$, n est pair (resp. impair) ssi n^2 est pair (resp. impair).