SÉRIE DE NOËL (*)

1. On considère la surface $\mathcal{C} \subset \mathbb{R}^3$ (cor de Gabriel) engendrée par la rotation de l'arc de courbe

 $\left\{ (x, y, z) = \left(x, \frac{1}{x}, 0\right); 1 \le x < \infty \right\}$

autour de l'axe Ox.

- (a) Montrer que le volume du domaine délimité par \mathcal{C} et par le plan d'équation x=1 vaut π .
- (b) Montrer que l'aire de \mathcal{C} est infinie.
- 2. Pour x > 0, on définit la fonction gamma par $\Gamma(x) = \int_0^\infty y^{x-1} e^{-y} dy$.

Prouver les propriétés suivantes :

- (a) l'intégrale est convergente pour tout x > 0 (distinguer les cas $x \le 1$ et x > 1);
- (b) $\Gamma(x+1) = x \Gamma(x)$ pour tout x > 0;
- (c) $\Gamma(n+1) = n!$ pour tout $n \in \mathbb{N}$.
- 3. Etudier la convergence de $\int_2^\infty \frac{\mathrm{d}x}{x^\alpha \ln^\beta(x)}$ (intégrales de Bertrand) en fonction des paramètres $\alpha, \beta \in \mathbb{R}$.

Comparer le résultat avec l'exercice 3 (c), série 6 (séries de Bertrand).

- 4. Soit $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ les fonctions définies par $f(x) = \left(\int_0^x e^{-t^2} dt\right)^2$ et $g(x) = \int_0^1 \frac{e^{-x^2(t^2+1)}}{t^2+1} dt$.
 - (a) Montrer que, pour tout $x \in \mathbb{R}$, $f(x) + g(x) = \pi/4$. Indication: On calculera g'(x) en "dérivant sous l'intégrale" (sans justification).
 - (b) En déduire que $\int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi}$.
- 5. Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^{\pi/2} \sin^n(x) dx$ (intégrales de Wallis).
 - (a) Donner une expression explicite de I_{2k} et I_{2k+1} pour tout $k \in \mathbb{N}$. Indication: Calculer I_0, I_1 , puis intégrer par parties.
 - (b) Prouver que $\lim_{n\to\infty} \frac{I_n}{I_{n-1}} = 1$. Indication: Montrer que $I_{n-1} \geq I_n > 0$ pour tout $n \in \mathbb{N}^*$ et utiliser (a).
 - (c) Déduire de (a) et (b) la formule de Wallis : $\lim_{k\to\infty} \frac{1}{k} \left[\frac{2\cdot 4\cdots (2k-2)\cdot (2k)}{1\cdot 3\cdots (2k-1)} \right]^2 = \pi$. Puis montrer que $I_n \sim \sqrt{\frac{\pi}{2n}}$ lorsque $n\to\infty$.
 - (d) A l'exercice 4, série 10, on a prouvé qu'il existe $\ell \in (e^{-1}, \infty)$ tel que $n! \sim \ell^{-1} \sqrt{n} \left(\frac{n}{e}\right)^n (n \to \infty)$. Utiliser (c) pour montrer que $\ell^{-1} = \sqrt{2\pi}$, d'où la formule de Stirling : $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n (n \to \infty)$.
- 6. Le but de cet exercice est de prouver la formule $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ (problème "de Bâle", Euler 1741).
 - (a) Calculer l'intégrale généralisée $\int_0^1 \frac{\arcsin(x)}{\sqrt{1-x^2}} dx$
 - (b) Prouver que $\arcsin(x) = x + \sum_{k=1}^{\infty} \frac{1 \cdot 3 \cdots (2k-1)}{2 \cdot 4 \cdots (2k)} \frac{x^{2k+1}}{2k+1}, \ \forall x \in (-1,1).$

Indication: Le résultat de l'exercice 1 (b) (iii), série 12, reste vrai pour $x \in (-1,1)$ et $\alpha < 0$.

(c) En déduire que $\int_0^1 \frac{\arcsin(x)}{\sqrt{1-x^2}} dx = \sum_{k=0}^\infty \frac{1}{(2k+1)^2}$ et conclure.

Indication : On pourra calculer $\int_0^1 \frac{x^{2k+1}}{\sqrt{1-x^2}} dx$ en se ramenant à une intégrale de Wallis.