Série 14

1. Calculer les intégrales suivantes en utilisant la décomposition en éléments simples des fonctions rationnelles :

(a)
$$\int \frac{2x+5}{4x^2-12x+9} dx$$
; (b) $\int \frac{3x^2+1}{(x^2+x)(x^2+1)} dx$; (c) $\int \frac{x^6+1}{(x^2+1)^2} dx$.

- 2. Les substitutions d'Euler permettent de transformer des intégrandes irrationnels en fonctions rationnelles, que l'ont sait toujours intégrer.
 - (a) Pour $x \in (2, \infty)$, calculer l'intégrale indéfinie $\int \frac{\mathrm{d}x}{(x-2) + \sqrt{x^2 3x + 2}} \quad \text{en posant } t = \sqrt{\frac{x-1}{x-2}}.$
 - (b) Pour $x \in (0,2)$, calculer l'intégrale indéfinie $\int \frac{\mathrm{d}x}{(x+2)\sqrt{2x-x^2}} \quad \text{en posant } t = \sqrt{\frac{x}{2-x}}.$
- 3. Montrer que si $f:[a,b]\to\mathbb{R}$ est intégrable alors $\int_a^b f(x)\,\mathrm{d}x=\int_a^b f(a+b-x)\,\mathrm{d}x.$ Utiliser ce résultat pour calculer les intégrales suivantes :

(a)
$$\int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx$$
; (b) $\int_0^{\pi/4} \ln(1 + \tan x) dx$.

4. Calculer les intégrales suivantes (où a > 0) :

(a)
$$\int_0^a \sqrt{a^2 - x^2} \, dx$$
; (b) $\int_0^a \frac{x^2}{\sqrt{x^2 + a^2}} \, dx$; (c) $\int_{-1}^0 \frac{x + 2}{\sqrt{x + 1} + 1} \, dx$; (d) $\int_{-\pi}^{\pi} \frac{1}{2 + \cos x} \, dx$.

- 5. \star On considère l'arc de courbe (cycloïde) paramétré par $x=t-\sin t,\ y=1-\cos t,\ t\in[0,2\pi].$
 - (a) Calculer la longueur de l'arc.
 - (b) Calculer l'aire du domaine délimité par cet arc et l'axe des abscisses.
- 6. \star On considère la surface $\mathcal{S}\subset\mathbb{R}^3$ engendrée par la rotation de l'arc de courbe

$$\{(x,y,z) = (x,\cosh x,0)\,;\, 0 \le x \le 1\}$$

autour de l'axe Ox.

- (a) Calculer l'aire de S.
- (b) Calculer le volume du domaine délimité par S et par les plans x = 0 et x = 1.
- 7. Calculer les intégrales généralisées suivantes :

(a)
$$\int_0^\infty e^{-\lambda x} dx \ (\lambda > 0);$$
 (b) $\int_1^\infty \frac{\ln x}{x^2} dx;$ (c) $\int_0^1 \ln x dx;$ (d) $\int_{-2}^4 \frac{1}{\sqrt{-x^2 + 2x + 8}} dx.$

- 8. Etudier la convergence des intégrales généralisées suivantes :
- (a) $\int_1^\infty \frac{\ln x}{x^2 + 1} \, dx$; (b) $\int_0^\infty \frac{x}{x^2 + \cos^2 x} \, dx$; (c) $\int_2^\infty \frac{\ln x 1}{(\ln^2 x + 1)\sqrt{x^2 x + 1}} \, dx$; (d) $\int_0^\infty \sin(e^{-x}) \, dx$;
- (e) $\int_0^\infty \left(\frac{\pi}{2} \arctan(x^2)\right) dx$; (f) $\int_0^{\pi/2} \ln(\sin x) dx$; (g) $\int_0^\pi \frac{1}{\sqrt{\sin x}} dx$; (h) $\int_1^\infty \frac{1}{x\sqrt{x^2 1}} dx$.