Série 13

- 1. Soit $f:[a,b)\to\mathbb{R}$ une fonction continue et F une primitive de $f\big|_{(a,b)}$. Montrer qu'il existe une primitive $\widetilde{F}:[a,b)\to\mathbb{R}$ de f telle que $F=\widetilde{F}\big|_{(a,b)}$ et $\widetilde{F}(a)=\lim_{x\to a^+}F(x)$.
- 2. Calculer la dérivée de la fonction $g:(0,\infty)\to\mathbb{R},\ g(t)=\int_{1/t}^t\frac{\ln x}{x+1}\,\mathrm{d}x.$
- 3. Calculer les primitives suivantes en précisant leur domaine de définition :

(a)
$$\int xe^x dx$$
; (b) $\int x^2e^x dx$; (c) $\int \ln x dx$; (d) $\int \ln^2 x dx$; (e) $\int x^\alpha \ln x dx$ ($\alpha \in \mathbb{R}$);

(f)
$$\int x \ln^2 x \, dx$$
; (g) $\int e^x \sin x \, dx$; (h) $\int e^x \cos x \, dx$; (i) $\int x \cos x \, dx$; (j) $\int x^2 \cos x \, dx$;

(k)
$$\int \ln\left(x + \sqrt{1 + x^2}\right) dx$$
; (l) $\int \arctan x dx$; (m) $\int \arcsin x dx$; (n) $\int \frac{x \arcsin x}{\sqrt{1 - x^2}} dx$.

Indication: Intégration par parties.

- 4. Calculer les primitives suivantes :
 - (a) $\int \cos(\sqrt{x}) dx$ sur chacun des intervalles $(0, \infty)$ et $[0, \infty)$;
 - (b) $\int \frac{x+2}{\sqrt{x+1}+1} dx$ sur chacun des intervalles $(-1,\infty)$ et $[-1,\infty)$;
 - (c) $\int \frac{x-1}{x-2\sqrt{x-1}} dx$ sur chacun des ensembles $[1,2), (2,\infty)$ et $[1,2) \cup (2,\infty)$.

Indication : Changement de variable.

- 5. Calculer $\int \frac{1}{2 + \cos x} dx$ sur $(-\pi, \pi)$ et sur \mathbb{R} .
- 6. (a) Déterminer les primitives suivantes, pour tout $k \in \mathbb{R}$: (i) $\int \frac{1}{t^2 + k^2} dt$; (ii) $\int \frac{1}{t^2 k^2} dt$.
 - (b) Utiliser ces résultats pour montrer que, pour tout $a, b, c \in \mathbb{R}, \ a \neq 0$:

$$- \sin b^2 - 4ac < 0: \int \frac{1}{ax^2 + bx + c} dx = \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}} + C;$$

$$- \sin b^2 - 4ac = 0: \int \frac{1}{ax^2 + bx + c} dx = -\frac{2}{2ax + b} + C;$$

$$- \sin b^2 - 4ac > 0: \int \frac{1}{ax^2 + bx + c} dx = \frac{1}{\sqrt{b^2 - 4ac}} \ln \left| \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right| + C.$$

(c) Calculer: (i)
$$\int \frac{x+3}{x^2-2x-5} dx$$
; (ii) $\int \frac{2x-1}{x^2+x+1} dx$.

7. (\star) Pour $a \in \mathbb{R}^*$ et $n \in \mathbb{N}^*$ fixés, on considère les intégrales indéfinies

$$I_n(t) = \int \frac{1}{(t^2 + a^2)^n} dt, \quad t \in \mathbb{R}.$$

- (a) Calculer I_1 et I_2 .
- (b) Trouver une relation de récurrence entre I_n et I_{n-1} , pour tout $n \geq 2$.