Série 10

- 1. Montrer que $\arctan(x) + \arctan(1/x) = \pi/2$ pour tout x > 0.
- 2. Calculer les limites suivantes :

(a)
$$\lim_{x\to 0} \left(\frac{1}{x^2} - \cot^2(x)\right)$$
; (b) $\lim_{n\to\infty} n\left[\left(1 + \frac{1}{n}\right)^{n+\alpha} - e\right] (\alpha \in \mathbb{R})$.

- 3. (a) Pour $\alpha \in \mathbb{R} \setminus (\frac{1}{3}, \frac{1}{2})$, étudier la monotonie de la fonction $f_{\alpha} : (1, \infty) \to \mathbb{R}$, $f_{\alpha}(x) = (x + \alpha) \ln(1 + 1/x)$.
 - (b) Prouver que la suite $(e_n(\alpha))_{n\geq 1}$ définie par $e_n(\alpha) = (1+1/n)^{n+\alpha}$ est strictement décroissante pour $\alpha \geq \frac{1}{2}$ et strictement croissante pour $\alpha \leq \frac{1}{3}$. En déduire que

$$\left(1 + \frac{1}{n}\right)^{n+1/3} < e < \left(1 + \frac{1}{n}\right)^{n+1/2} \quad \forall n \in \mathbb{N}^*.$$

Remarque: Noter le lien entre les inégalités ci-dessus et l'indication de l'exercice 5 (a), série 5.

- 4. On pose $x_n = \frac{\sqrt{n}}{n!} \left(\frac{n}{e}\right)^n$ et $y_n = \ln\left(\frac{x_{n+1}}{x_n}\right)$, pour tout $n \in \mathbb{N}^*$.
 - (a) Prouver que $y_n > 0$ pour tout $n \in \mathbb{N}^*$ et que la série $\sum_{n \geq 1} y_n$ est convergente.
 - (b) Déduire du point (a) que $(x_n)_{n\geq 1}$ est une suite croissante qui converge vers une limite $\ell \in (e^{-1}, \infty)$. Remarque: Nous calculerons la valeur exact de ℓ dans un prochain exercice, ce qui nous fournira une estimation précise de n! par des fonctions élémentaires lorsque $n \to \infty$.
- 5. Soit $h: \mathbb{R}^* \to \mathbb{R}$ définie par $h(x) = \frac{e^{x^3 \sin(1/x^2)} 1}{x}$. Montrer que la règle de Bernoulli-l'Hospital ne permet pas de calculer $\lim_{x \to 0} h(x)$ et trouver un autre moyen de calculer cette limite.
- 6. Trouver dans chaque cas le développement limité d'ordre n de la fonction f autour de x=0:

(a)
$$f(x) = \cos^2 x$$
, $n = 3$; (b) $f(x) = \sin^3 x$, $n = 5$; (c) $f(x) = \tan x$, $n = 5$;

(d)
$$f(x) = \frac{\ln(1+x)}{e^x + 1}$$
, $n = 2$; (e) $f(x) = \sin(\sin x)$, $n = 5$; (f) $f(x) = \sqrt{\frac{1}{2} + \sin x}$, $n = 3$.

7. On considère la fonction $f(x) = \begin{cases} \frac{\sin(x)}{x}, & x \neq 0, \\ 1 & x = 0. \end{cases}$

Montrer que $f \in C^1(\mathbb{R})$ et caractériser tous les extrema de f. Indication : On pourra résoudre graphiquement l'équation $\tan x = x$.

8. Etudier les fonctions suivantes (domaine, asymptotes, régions de croissance/décroissance, convexité/concavité, points de minimum/maximum, points d'inflexion, zéros) :

(a)
$$f(x) = x + \sqrt{1 - x}$$
; (b) $f(x) = \sqrt[3]{x^2} - \sqrt[3]{x}$; (c) $f(x) = \frac{x^3}{x^2 - 1}$; (d) $f(x) = \frac{1 + \ln x}{x}$; (e) $f(x) = (x + 2)e^{1/x}$.

Remarque : Si l'on ne sait pas les déterminer exactement, on pourra localiser les zéros approximativement en se servant du théorème de la valeur intermédiaire.