Corrigé 9

1. (a)
$$D(f) = \mathbb{R}$$
, $D(f') = \mathbb{R}^*$, $f'(x) = \operatorname{sgn}(x)$ (b) $D(f) = D(f') = \mathbb{R}$, $f'(x) = 2|x|$ (c) $D(f) = \mathbb{R}_+$, $D(f') = \mathbb{R}_+^*$, $f'(x) = \frac{7}{8\sqrt[8]{x}}$ (d) $D(f) = \mathbb{R}_+$, $D(f') = \mathbb{R}_+ \setminus \{1\}$, $f'(x) = -\frac{\sqrt{x}}{\sqrt[3]{1 - \sqrt{x^3}}}$

2. f est continûment dérivable sur \mathbb{R}^* comme composée de fonctions continûment dérivables. En x=0, on a

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} x^{\alpha - 1} \sin(1/x^{\beta}) = 0,$$

si $\alpha > 1$. Si $\alpha \le 1$, la limite ci-dessus n'existe pas et f n'est pas dérivable en x = 0. Pour $x \ne 0$, on a

$$f'(x) = \alpha x^{\alpha - 1} \sin(1/x^{\beta}) - \beta x^{\alpha - \beta - 1} \cos(1/x^{\beta}).$$

La fonction dérivée f' est donc continue en x=0 ssi $\alpha>\beta+1$. Ainsi, $f\in C^1(\mathbb{R})$ ssi $\alpha>\beta+1$.

3. On a déjà vu que f n'est continue qu'en $x = \pm 1$, donc f n'est pas dérivable sur $\mathbb{R} \setminus \{\pm 1\}$. Pour x = -1, soit $(x_n) \subset \mathbb{Q}$ et $(y_n) \subset \mathbb{R} \setminus \mathbb{Q}$ deux suites qui convergent vers -1. On a alors

$$\lim_{n \to \infty} \frac{f(x_n) - f(-1)}{x_n - (-1)} = \lim_{n \to \infty} \frac{x_n^3 + 1}{x_n + 1} = \lim_{n \to \infty} (x_n^2 - x_n + 1) = 3$$
et
$$\lim_{n \to \infty} \frac{f(y_n) - f(-1)}{y_n - (-1)} = \lim_{n \to \infty} \frac{y_n^2 + y_n}{y_n + 1} = \lim_{n \to \infty} y_n = -1,$$

donc f n'est pas dérivable en x = -1

Pour x=1, soit $(x_n)\subset\mathbb{Q}$ et $(y_n)\subset\mathbb{R}\setminus\mathbb{Q}$ deux suites qui convergent vers 1. On a dans ce cas

$$\lim_{n \to \infty} \frac{f(x_n) - f(1)}{x_n - 1} = \lim_{n \to \infty} \frac{x_n^3 + 1 - 2}{x_n - 1} = \lim_{n \to \infty} (x_n^2 + x_n + 1) = 3$$
et
$$\lim_{n \to \infty} \frac{f(y_n) - f(1)}{y_n - 1} = \lim_{n \to \infty} \frac{y_n^2 + y_n - 2}{y_n - 1} = \lim_{n \to \infty} y_n + 2 = 3,$$

donc f est dérivable en x = 1.

4. Premièrement, f est continue ssi $f(1^-) = f(1^+)$, i.e. $\alpha + \beta = 3$. f est clairement dérivable sur les deux demi-droites $(-\infty, 1)$ et $(1, \infty)$. D'autre part, f dérivable en $x = 1 \iff$

$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} \iff \lim_{x \to 1^{-}} \frac{x^{2} - x}{x - 1} = \lim_{x \to 1^{+}} \frac{\alpha x - \alpha}{x - 1} \iff 1 = \alpha.$$

On trouve donc que f est dérivable en tout point ssi $(\alpha, \beta) = (1, 2)$. On vérifie alors aisément que $f \in C^1(\mathbb{R})$.

- 5. (a) Soit $f: \mathbb{R} \to \mathbb{R}$, $f(x) = xe^x + 1 e^x$. On a que $f'(x) = xe^x$, donc f' < 0 sur $(-\infty, 0)$, f'(0) = 0 et f' > 0 sur $(0, \infty)$. Puisque f est continue, f(0) = 0 est donc son minimum global, d'où la première inégalité. D'autre part, avec $g: \mathbb{R} \to \mathbb{R}$, $g(x) = e^x x 1$, on a $g'(x) = e^x 1$, g' < 0 sur $(-\infty, 0)$, g'(0) = 0 et g' > 0 sur $(0, \infty)$. Donc g(0) = 0 est le minimum global de g, ce qui donne la deuxième inégalité.
- (b) se démontre par des arguments similaires en utilisant les fonctions $f, g: (-1, \infty) \to \mathbb{R}, f(x) = x \ln(1+x)$ et $g(x) = \ln(1+x) x/(x+1)$.
- (c) Soit $f:[0,4\pi/3] \to \mathbb{R}$, $f(x)=\sin x x\cos x$. On a alors que $f'(x)=x\sin x$ est >0 pour $x\in(0,\pi)$ et <0 pour $x\in(\pi,4\pi/3)$. f étant continue, elle est donc strictement croissante sur $(0,\pi)$ et strictement décroissante sur $(\pi,4\pi/3)$. Par conséquent, comme f(0)=0 et $f(4\pi/3)=2\pi/3-\sqrt{3}/2>0$, on a que f(x)>0 pour tout $x\in(0,4\pi/3)$, d'où le résultat.
- (d) Puisque tan : $(0,1) \subset (-\pi/2,\pi/2) \to \mathbb{R}$ est strictement croissante, l'inégalité est équivalente à

$$x < \arctan\left(\frac{x}{1-x}\right) \quad \forall x \in (0,1).$$

Utilisant la formule pour la dérivée de la fonction inverse, on trouve que la fonction arctan : $\mathbb{R} \to (-\pi/2, \pi/2)$ a pour dérivée

 $\arctan'(y) = \frac{1}{1+u^2} \quad \forall y \in \mathbb{R}.$

Posant $f:[0,1)\to\mathbb{R}$, $f(x)=\arctan\left(\frac{x}{1-x}\right)-x$, nous obtenons alors $f'(x)=\frac{2x(1-x)}{2x^2-2x+1}>0$ pour tout $x \in (0,1)$. Puisque f est continue, on a donc f(x) > f(0) = 0, pour tout $x \in (0,1)$, ce qui prouve l'inégalité.

(e) Posant $f(x) = \sin x - x + x^3/6$, on a que $f'(x) = \cos x + x^2/2 - 1$, $f''(x) = -\sin x + x$ et $f'''(x) = 1 - \cos x$. Comme $f \in C^{\infty}(\mathbb{R})$, on a alors les implications successives

$$f'''(x) \ge 0 \ \forall x \ge 0 \Rightarrow f''(x) \ge f''(0) = 0 \ \forall x \ge 0 \Rightarrow f'(x) \ge f'(0) = 0 \ \forall x \ge 0 \Rightarrow f(x) \ge f(0) = 0 \ \forall x \ge 0,$$

ce qui prouve la première inégalité. La seconde se démontre de la même manière en utilisant la fonction $g(x) = \sin x - x + x^3/6 - x^5/120$ et en dérivant cinq fois.

6. (a) En appliquant deux fois la règle de Bernoulli-l'Hospital (BH), on obtient $\lim_{x\to 0} \frac{x-\sin x}{x^3} = \lim_{x\to 0} \frac{\sin x}{6x} = \frac{1}{6}$.

(b) En utilisant une fois BH et la limite connue $(1-\cos x)/x^2 \to 1/2$ quand $x \to 0$, on a

$$\lim_{x \to 0} \frac{x - \tan x}{x^3} = \lim_{x \to 0} \frac{1 - 1/\cos^2 x}{3x^2} = \lim_{x \to 0} \frac{1}{\cos^2 x} \frac{\cos^2 x - 1}{3x^2} = \lim_{x \to 0} \frac{1}{\cos^2 x} \frac{(\cos x - 1)(\cos x + 1)}{3x^2} = -\frac{1}{3}.$$

(c) En utilisant une fois BH, il vient

$$\lim_{x \to 0} \frac{x - \arcsin x}{x^3} = \lim_{x \to 0} \frac{1 - 1/\sqrt{1 - x^2}}{3x^2} = \lim_{x \to 0} \frac{\sqrt{1 - x^2} - 1}{3x^2\sqrt{1 - x^2}} = \lim_{x \to 0} \frac{-x^2}{3x^2\sqrt{1 - x^2}(1 + \sqrt{1 - x^2})} = -\frac{1}{6}.$$

(e) On constate que $(1+x)^{1/x} = \exp\left(\frac{1}{x}\ln(1+x)\right)$, où $\frac{1}{x}\ln(1+x) \to 1$ quand $x \to 0$ (par BH). Ainsi, par la continuité de la fonction exponentielle, $\lim_{x\to 0} (1+x)^{1/x} \stackrel{x}{=} e$.

(g) En 0^+ pas de forme indéterminée, la limite est 0. En 0^- , le changement de variable $t=e^{-1/x}$ et BH donnent

$$\lim_{x \to 0^{-}} \frac{x}{e^{1/x}} = \lim_{t \to +\infty} -\frac{t}{\ln t} = -\lim_{t \to +\infty} \frac{1}{1/t} = -\infty.$$

(h) En appliquant BH et utilisant (b), on a que

$$\lim_{x \to 0} \frac{\ln\left(\frac{\sin x}{x}\right)}{x^2} = \lim_{x \to 0} \frac{\frac{x}{\sin x} \cdot \frac{x \cos x - \sin x}{x^2}}{2x} = \lim_{x \to 0} \frac{x}{\sin x} \cdot \frac{\cos x}{2} \cdot \frac{x - \tan x}{x^3} = -\frac{1}{6}.$$

Par la continuité de la fonction exponentielle, on obtient donc $\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{1/x^2} = e^{-1/6}$.

7. (a) Si $\alpha \leq 0$, pas de forme indéterminée, la limite est $+\infty$. Pour $\alpha > 0$, on a une indétermination du type " ∞/∞ ", qu'on lève par BH : $\lim_{x \to \infty} \frac{\ln x}{r^{\alpha}} = \lim_{x \to \infty} \frac{1/x}{\alpha r^{\alpha - 1}} = \lim_{x \to \infty} \frac{1}{\alpha r^{\alpha}} = 0.$

(b) est similaire et on trouve
$$-\infty$$
 pour $\alpha \le 0$ et 0 pour $\alpha > 0$.

(c) découle de (b) en remarquant que $x^{x^{\alpha}} = \exp x^{\alpha} \ln x$, donc $x^{x^{\alpha}} \to 0$ si $\alpha \le 0$, $x^{x^{\alpha}} \to 1$ si $\alpha > 0$. (f) Par BH, $\lim_{x \to 0} \frac{a^x - e^x}{x} = \lim_{x \to 0} \frac{\ln(a)a^x - e^x}{1} = \ln(a) - 1$.

(f) Par BH,
$$\lim_{x \to 0} \frac{a^x - e^x}{x} = \lim_{x \to 0} \frac{\ln(a)a^x - e^x}{1} = \ln(a) - 1$$
.

8. Sous les hypothèses données, on peut simplement appliquer BH : $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} f'(x)$.

9. Supposons s.p.d.g. que f(a) < f(b) et soit $y \in (f(a), f(b))$. Posons alors $\varphi(x) = F(x) - yx$. Pour $x \in (a, b)$, on a donc $f(x) = y \operatorname{ssi} \varphi'(x) = 0$. Par ailleurs, on remarque que

$$\varphi'(a) = f(a) - y < 0 < f(b) - y = \varphi'(b).$$

Mais on ne peut pas appliquer le TVI à φ' car cette fonction n'est pas nécessairement continue. En revanche, φ est dérivable (et donc continue) sur [a,b], strictement décroissante dans un voisinage à droite de a et strictement croissante dans un voisinage à gauche de b. Elle doit donc avoir un point de minimum $x \in (a,b)$ tel que $\varphi'(x) = 0$. \square