Corrigé 4B

- 1. Voir https://www.youtube.com/watch?v=qicnruhAuIA
- 2. (i) On a $\limsup_{n\to\infty} x_n = \lim_{n\to\infty} x_{2n} = 1$ et $\liminf_{n\to\infty} x_n = \lim_{n\to\infty} x_{2n+1} = -1$.
- (ii) On a $x_n = \sin((n+8)\frac{\pi}{4})\cos((n+8)\frac{\pi}{4})$, donc $\limsup_{n\to\infty} x_n = \max\{x_0,\dots,x_7\} = \frac{1}{2}$ et $\liminf_{n\to\infty} x_n = \min\{x_0,\dots,x_7\} = -\frac{1}{2}$.
- (iii) Les points d'accumulations sont $acc(x_n) = \{0, 1\}$. Donc on a $\limsup_{n \to \infty} x_n = 1$ et $\liminf_{n \to \infty} x_n = 0$.
- (a) Si (x_n) est bornée, $acc(x_n) \neq \emptyset$ par Bolzano-Weierstrass. Donc $\liminf x_n$ et $\limsup x_n$ sont finies et $\liminf x_n = \inf(acc(x_n)) \leq \sup(acc(x_n)) = \limsup x_n$.
- (b) Si (x_n) converge vers $l \in \mathbb{R}$, alors toute sous-suite de (x_n) converge vers l. Donc $acc(x_n) = \{l\}$ et $\lim\inf x_n = \lim\sup x_n = l$.

Réciproquement, supposons $\liminf x_n = \limsup x_n = l \in \mathbb{R}$. Alors $\mathrm{acc}(x_n) = \{l\}$. De plus, (x_n) est bornée. En effet, supposons par l'absurde que (x_n) n'est pas bornée supérieurement (l'autre cas se traitant de façon analogue). Alors il existe une sous-suite (x_{n_k}) telle que $x_{n_k} \to +\infty$ lorsque $k \to \infty$. Mais ceci contredit $\limsup x_n \in \mathbb{R}$. Donc (x_n) est bornée. Montrons finalement que $x_n \to l$. Supposons par l'absurde qu'il existe une sous-suite (x_{n_k}) telle que $x_{n_k} \not\to l$ lorsque $k \to \infty$. Par Bolzano-Weierstrass, on peut extraire une sous-suite (x_{n_k}) de (x_{n_k}) qui converge. Notons $l' = \lim_{j \to \infty} x_{n_{k_j}}$. On a alors $l' \in \mathrm{acc}(x_n)$, donc l' = l, ce qui contredit l'hypothèse que $x_{n_k} \not\to l$. Ainsi, on a bien $\lim x_n = l$.

(c) On fait la preuve pour des suites bornées. Les autres cas se discutent de manière analogue. On montre que $\liminf x_n \le \liminf y_n$. L'inégalité des $\limsup se$ prouve de façon similaire.

Supposons par l'absurde que lim inf y_n < lim inf x_n . Alors, par définition de lim inf y_n , il existe $y \in \operatorname{acc}(y_n)$ tel que $y < \liminf x_n$. Soit (y_{n_k}) une sous-suite qui converge vers y. Considérons la sous-suite (x_{n_k}) correspondante. Par Bolzano-Weierstrass, on peut en extraire une sous-suite convergente $(x_{n_{k_j}})$. Notons $x = \lim_{j \to \infty} x_{n_{k_j}}$. Comme $x \in \operatorname{acc}(x_n)$, on a $x \ge \liminf x_n > y$. Or, par hypothèse,

$$x_{n_{k_i}} \le y_{n_{k_i}}, \ \forall j \in \mathbb{N} \implies x \le y,$$

ce qui est absurde.

3. (a) On sait du cours que $x_n \leq s_n$, pout tout $n \in \mathbb{N}$. Par l'exercice 1, on a alors

$$\limsup_{n \to \infty} x_n \le \limsup_{n \to \infty} s_n = \ell.$$

(b)-(c) Soit $N \in \mathbb{N}$ fixé. On commence par prouver que $s_N \leq (1 + \frac{1}{n})^{n+N}$ pour tout $n \in \mathbb{N}$. Par le binôme de Newton, on a $(1 + \frac{1}{n})^{n+N} = \sum_{k=0}^{n+N} \binom{n+N}{k} \frac{1}{n^k}$. Pour prouver le résultat, il suffit donc de prouver que

$$s_N = \sum_{k=0}^{N} \frac{1}{k!} \le \sum_{k=0}^{N} \binom{n+N}{k} \frac{1}{n^k}.$$

Par récurrence, on prouve que

$$\frac{1}{k!} \le \binom{n+N}{k} \frac{1}{n^k}, \quad \forall k = 0, \dots, N.$$

L'initialisation est triviale. Supposons l'hypothèse vrai pour un $k \in \{0, \dots, N\}$. On obtient alors

$$\frac{1}{(k+1)!} \leq \binom{n+N}{k} \frac{1}{n^k(k+1)} = \binom{n+N}{k+1} \frac{1}{n^{k+1} + (N-k)n^k} \leq \binom{n+N}{k+1} \frac{1}{n^{k+1}}.$$

Ceci prouve que $s_N \leq (1 + \frac{1}{n})^{n+N}$, pour tout $n \in \mathbb{N}$. Alors,

$$s_N \le \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{n+N} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^N = e = \liminf_{n \to \infty} x_n.$$

Laissant $N \to \infty$, ceci implique $\ell \le \liminf_{n \to \infty} x_n$. Par le point (a), on a donc bien

$$\ell \le \liminf_{n \to \infty} x_n \le \limsup_{n \to \infty} x_n \le \ell \implies \lim_{n \to \infty} x_n = \ell.$$

4. (a) Par l'exercice 2, on a $0 < e - s_n$ pour tout $n \in \mathbb{N}$. D'autre part, en utilisant la formule donnant la somme d'une série géométrique,

$$e - s_n = \sum_{k=1}^{\infty} \frac{1}{(n+k)!} = \frac{1}{(n+1)!} \left(1 + \sum_{k=2}^{\infty} \frac{1}{\prod_{l=2}^{k} (n+l)} \right)$$
$$< \frac{1}{(n+1)!} \sum_{k=0}^{\infty} \left(\frac{1}{n+1} \right)^k = \frac{1}{(n+1)!} \frac{1}{1 - \frac{1}{n+1}} = \frac{1}{n!n}.$$

(b) Supposons par l'absurde que $e=\frac{p}{q},$ avec $p,q\in\mathbb{N}^*.$ Par le point (a), on a

$$0 < q!(e - s_q) < \frac{1}{q} < 1.$$

Par notre hypothèse, q!e est entier. Comme

$$q!s_q = q!\left(1 + 1 + \frac{1}{2!} + \dots + \frac{1}{q!}\right)$$

est aussi entier, on conclut que $q!(e-s_q)$ est entier, ce qui est absurde.