Corrigé 2

- 1. Par hypothèse, b-a>0. Puisque $\mathbb R$ est archimédien, il existe un entier $n\geq 1$ tel que n(b-a)>1, i.e. nb-na>1. Donc il existe $p\in \mathbb Z$ tel que na< p< nb. On peut alors prendre c=p/n.
- 2. Tout d'abord, A est non vide (car $0 \in A$) et borné supérieurement, donc s est fini. En effet, supposons par l'absurde que A n'est pas borné supérieurement. Alors pour tout M > 0 il existe $x_M \in A$ tel que $x_M > M$, donc $x_M^2 > M^2$. On aboutit à une contradiction en choisissant par exemple M > 2.

Montrons maintenant que $s^2 = 2$.

Supposons par l'absurde que $s^2 < 2$. Nous allons construire un nombre x tel que $x^2 \le 2$ mais x > s, ce qui contredit la définition de s. Soit $\varepsilon \in (0,1]$. On cherche x sous la forme $x_{\varepsilon} = s + \varepsilon > s$. Comme $\varepsilon \le 1$, on a

$$x_{\varepsilon}^2 = s^2 + 2s\varepsilon + \varepsilon^2 \le s^2 + 2s\varepsilon + \varepsilon.$$

On déduit que $x_{\varepsilon}^2 \leq 2$ si $\varepsilon \leq \frac{2-s^2}{2s+1}$. Par l'hypothèse $s^2 < 2$, on a bien $\frac{2-s^2}{2s+1} > 0$. On peut donc choisir $\varepsilon \in (0,1]$ tel que $\varepsilon \leq \frac{2-s^2}{2s+1}$, et le x_{ε} correspondant donne la contradiction désirée.

Supposons maintenant que $s^2 > 2$. Nous allons construire un nombre x tel que x < s mais $x^2 > 2$, ce qui contredit à nouveau la définition de s. On écrit cette fois, $x_{\varepsilon} = s - \varepsilon$ pour $\varepsilon > 0$. On a

$$x_{\varepsilon}^2 = s^2 - 2s\varepsilon + \varepsilon^2 > s^2 - 2s\varepsilon.$$

Donc $x_{\varepsilon}^2 > 2$ si $\varepsilon < \frac{s^2-2}{2s}$. Par l'hypothèse $s^2 > 2$, on a bien $\frac{s^2-2}{2s} > 0$. On peut donc choisir $\varepsilon \in (0, \frac{s^2-2}{2s})$ et le x_{ε} correspondant donne la contradiction désirée.

Nous avons donc montré que $s^2 < 2$ et $s^2 > 2$ sont impossibles, d'où le résultat. \square

- 3. (a) A est clairement minoré par 0 et majoré par 1, donc A est borné. De plus, $0 = \inf A$ car pour tout $\varepsilon > 0$ il existe $x \in A$ tel que $0 \le x \le \varepsilon$. De même, $1 = \sup A$ car pour tout $\varepsilon > 0$ il existe $x \in A$ tel que $1 \varepsilon \le x \le 1$.
 - (b) Mêmes conclusions qu'au point (a). Mais dans ce cas inf A, sup $A \notin A$.
- (c) Clairement, A n'est pas borné inférieurement, donc A n'est pas borné. Mais A est majoré par $\sqrt{2}$, et $\sqrt{2} = \sup A$. En effet, par densité de \mathbb{Q} dans \mathbb{R} (ex. 1), pour tout $\varepsilon > 0$ il existe $x \in A$ tel que $\sqrt{2} \varepsilon \le x \le \sqrt{2}$.
- (d) A est minoré par 0 et majoré par 1, donc A est borné. On a que $1 = \sup A \in A$. En outre, $0 = \inf A \notin A$. En effet, pour tout $\varepsilon > 0$ Archimède donne un $n \in \mathbb{N}^*$ tel que $n\varepsilon > 1$, d'où $0 < 1/n < \varepsilon$.
- 4. (a) Supposons par l'absurde qu'il existe deux majorants s, s' de A qui satisfont la propriété

$$\forall \varepsilon > 0 \ \exists x \in A \quad \text{t.q.} \quad s - \varepsilon \le x \le s,$$

mais que $s \neq s'$. On peut également supposer s.p.d.g. que s' < s. On choisit alors $\varepsilon \in (0, s - s')$, de sorte que $s' < s - \varepsilon$. Ainsi, puisque s' est un majorant de A, on a $x \leq s' < s - \varepsilon$ pour tout $x \in A$ (un dessin peut aider). Donc $A \cap [s - \varepsilon, s] = \emptyset$, ce qui contredit le fait que $s = \sup A$. Un argument similaire montre l'unicité de inf A.

(b) (i) Tout d'abord, il est clair que, si A est minoré alors -A est majoré (symétrie par rapport à l'origine). Par définition de l'inf,

$$\forall \varepsilon > 0 \ \exists x \in A \quad \text{t.q.} \quad \inf A \le x \le \inf A + \varepsilon.$$

Posant $y = -x \in (-A)$ et multipliant la paire d'inégalités par -1, ceci équivaut à

$$\forall \varepsilon > 0 \ \exists y \in (-A) \quad \text{t.q.} \quad -\inf A - \varepsilon \leq y \leq -\inf A.$$

Il découle alors de l'unicité prouvée sous (a) que $\sup(-A) = -\inf A$. La preuve que $\inf(-A) = -\sup A$ est analogue.

(ii) Soit $\varepsilon > 0$. Il existe $x_A \in A$ et $x_B \in B$ tels que $\sup A - \varepsilon/2 \le x_A \le \sup A$ et $\sup B - \varepsilon/2 \le x_B \le \sup B$. Donc $x = x_A + x_B$ satisfait $\sup A + \sup B - \varepsilon \le x \le \sup A + \sup B$. Invoquant à nouveau l'unicité du sup, on obtient $\sup(A + B) = \sup A + \sup B$. Le fait que $\inf(A + B) = \inf A + \inf B$ se démontre de façon similaire.

- (c) Il suffit de remarquer que, pour tout $x \in \mathbb{R}$, on a $-|x| \le x \le |x|$. Notant $B = \{|x|; x \in A\}$, on obtient alors que $-\sup B \le x \le \sup B$, pour tout $x \in A$.
- 5. (a) (i) L'intersection $\cap_n A_n$ est bornée. (ii) En général $\cup_n A_n$ n'est pas borné. Pour (i), il suffit de remarquer que $\cap_n A_n \subset A_{17}$, qui est borné. Pour (ii), considérer les intervalles $A_n = [n, n+1], n \in \mathbb{N}$.
- (b) Si A est fini, supposons qu'il contient k éléments $a_1 < a_2 < \cdots < a_k$. Alors inf $A = a_1$ et sup $A = a_k$, donc A est bien borné inférieurement et supérieurement.
- 6. (a) (i) Alors est f est injective, ce qui se montre par contraposition. Soit $y \in B$. Si f(x) = f(x') = y, alors x = x' car l'équation f(x) = y a au plus une solution.
 - (ii) Dans ce cas f est surjective. Pour tout $y \in A$, il existe (au moins) un $x \in A$ tel que f(x) = y.
 - (iii) Alors f est bijective.
- (b) Nous savons de la théorie des équations du deuxième degré (Viète) que la droite $x=x_{\min}:=-b/2a$ est un axe de symétrie du graphe de f (parabole), et que la fonction atteint son minimum/maximum en ce point si a>0/a<0. Par conséquent, f n'est pas surjective : si a>0, on a que $(-\infty,c-b^2/4a)\cap \text{Im}(f)=\emptyset$; si a<0, on a que $(c-b^2/4a,+\infty)\cap \text{Im}(f)=\emptyset$. D'autre part, la symétrie du graphe montre que f n'est pas injective ; par exemple, on vérifie aisément que f(-b/2a-1)=f(-b/2a+1).
- (c) Pour montrer que f est injective, on procède par contraposition : on suppose que f(a) = f(b) et l'on montre que a = b. En effet,

$$a^{3} + a = b^{3} + b \iff (a - b)(a^{2} + ab + b^{2} + 1) = 0 \implies a = b \text{ ou } a^{2} + ab + b^{2} + 1 = 0.$$

Nous aurons terminé si la seconde relation est impossible pour $a,b\in\mathbb{R}$. Supposons par l'absurde que $a^2+ab+b^2+1=0$. On a alors

$$ab = (a+b)^2 + 1 > 0 \implies a^2 + ab + b^2 + 1 > 0,$$

contradiction &

D'autre part, f est aussi surjective. En effet, l'équation du troisième degré $x^3 + px + q = 0$ admet pour tous $p, q \in \mathbb{R}$ tels que $27q^2 + 4p^3 \ge 0$ la solution (réelle)

$$x = \sqrt[3]{-\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}} + \sqrt[3]{-\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}}.$$

Autre approche : constater que le graphe de f intersecte l'axe Ox : en effet, la fonction f est continue et $\lim_{x\to\pm\infty} f(x) = \pm\infty$, ce qui montre qu'elle prend toutes les valeurs réelles. Mais cet argument fait appel à la théorie des fonctions continues (théorème de la valeur intermédiaire), qui fait l'objet d'un prochain chapitre...