Série 7.2 – jeudi 31 octobre 2024

Exercice 1. Contrôler la "croissance" à l'infini des fonctions uniformément continues.

Soit $f:[0,+\infty[\to\mathbb{R}$ une fonction uniformément continue. Montrer qu'il existe $\alpha,\beta\in\mathbb{R}$ tels que pour tout $x\in[0,+\infty[$:

$$|f(x)| \le \alpha x + \beta.$$

Indications:

- (a) Montrer qu'il existe $\delta > 0$ tel que si $x, y \in [0, +\infty[, |x-y| \le \delta \text{ alors } |f(x) f(y)| \le 1.$
- (b) Vérifier que $|f(n\delta) f(0)| \le n, \forall n \in \mathbb{N}$.
- (c) Montrer que $|f(x)| \leq 1 + m + |f(0)|$ avec $m = \left|\frac{x}{\delta}\right|$ où $\lfloor y \rfloor$ est la partie entière de $y \in \mathbb{R}$. Conclure.

Exercice 2. Bien cerner la continuité uniforme.

- 1. Soit $f:]a,b] \to \mathbb{R}$ continue. Montrer que f est uniformément continue ssi $\lim_{x\to a^+} f(x)$ existe et est finie.
- 2. (À rendre) Soit $f:[a,+\infty[\to\mathbb{R}]$ une fonction continue. On suppose que

$$\lim_{x \to +\infty} f(x) = \ell \in \mathbb{R}.$$

Montrer que f est uniformément continue sur $[a, +\infty[$.

3. Donner, en justifiant, un exemple de fonction continue et bornée qui n'est pas uniformément continue.

Exercice 3. Étude de la continuité uniforme et de la lipschitzianité sur un cas concret.

Montrer que $f: x \mapsto \sqrt{x}$ définie sur $[0, +\infty[$ est uniformément continue mais pas lipschitzienne.

Exercice 4 (*). Un autre point de vue sur la continuité uniforme.

Soit I =]a, b[avec $a, b \in \mathbb{R} \cup \{-\infty, +\infty\}$. On dit que $f : I \to \mathbb{R}$ est presque lipschitzienne si

$$\forall \varepsilon > 0, \ \exists L > 0, \ \forall x, y \in I, \ |f(x) - f(y)| \le L|x - y| + \varepsilon.$$

Montrer que $f:I\to\mathbb{R}$ est uniformément continue ssi f est presque lipschitzienne.

Exercice 5 (*). Construire des fonctions lipschitziennes particulières.

- 1. Donner (sans justifier) un exemple de fonction $f : \mathbb{R} \to \mathbb{R}$ lipschitzienne et bijective telle que f^{-1} n'est pas lipschitzienne.
- 2. (**) Montrer que les fonctions lipschitziennes sur [0,1] sont denses dans l'ensemble des fonctions uniformément continues sur [0,1], c-à-d. si $g:[0,1]\to\mathbb{R}$ est une fonction uniformément continue, alors pour tout $\varepsilon>0$ on peut trouver $f_{\varepsilon}:[0,1]\to\mathbb{R}$ lipschitzienne telle que

$$|f_{\varepsilon}(x) - q(x)| < \varepsilon, \quad \forall x \in [0, 1].$$

Indication. On pourra au choix soit (i) considérer la fonction $f_{\epsilon}(x) = \sup_{y \in [0,1]} (g(y) - L_{\epsilon}|x-y|)$ pour un $L_{\epsilon} > 0$ bien choisi, ou (ii) construire une approximation affine par morceaux de g.