Série 5.1 – mardi 8 octobre 2024

Exercice 1. Objectif: bien comprendre les définitions.

Soit $(a_n)_{n=0}^{\infty}$ une suite réelle. Montrer que $\sum_{n=0}^{\infty} (a_{n+1} - a_n)$ converge ssi la suite $(a_n)_{n=0}^{\infty}$ converge.

Exercice 2. Objectif: rédiger proprement un raisonnement simple.

Soit $(a_n)_{n=0}^{\infty}$ une suite de nombres réels positifs ou nuls. Montrer que $\sum_{n=0}^{\infty} \frac{a_n}{1+n^2a_n}$ converge.

Exercice 3. Objectif: identifier et appliquer des critères de convergence.

Déterminer si les séries suivantes convergent ou divergent:

1. $\sum_{n=0}^{+\infty} \frac{n^4}{3^n}$

- 3. $\sum_{n=0}^{\infty} \frac{n}{4^n + n^2}$
- 2. $\sum_{n=1}^{+\infty} \left(\sqrt{n^2 + 7} n \right)$ (penser à la quantité conjuguée) 4. $\sum_{n=0}^{\infty} \cos(n^2) \sin\left(\frac{1}{2^n}\right)$ (utiliser $\sin(x) \le x$, $\forall x \in \mathbb{R}_+$)

Exercice 4. Objectif: s'exercer à la manipulation de sommes.

Trouver trois réels α , β , et μ tels que pour tout entier $n \geq 3$:

$$\frac{n^3}{n!} = \frac{\alpha}{(n-1)!} + \frac{\beta}{(n-2)!} + \frac{\mu}{(n-3)!}$$

En déduire la somme de la série :

$$\sum_{n=1}^{\infty} \frac{n^3}{n!}.$$

Indication : On pourra utiliser l'identité $\sum_{k=0}^{\infty} \frac{1}{k!} = e$, que l'on verra plus tard en cours.

Exercice 5 (*). Objectif: faire preuve d'inventivité et de méthode pour créer des objets.

1. Soient (a_n) et (b_n) deux suites réelles. Montrer que

$$\limsup_{n} (a_n + b_n) \le \limsup_{n} a_n + \limsup_{n} b_n;$$

2. Construire une famille de suites $(a_{1,n}), (a_{2,n}), (a_{3,n}), \ldots$ telle que

$$\limsup_{n} (a_{1,n} + a_{2,n} + \dots) > \limsup_{n} a_{1,n} + \limsup_{n} a_{2,n} + \dots$$

3. Construire deux suites (a_n) et (b_n) telles que

$$\liminf_n a_n + \liminf_n b_n < \liminf_n (a_n + b_n) < \liminf_n a_n + \limsup_n b_n < \limsup_n (a_n + b_n) < \limsup_n a_n + \limsup_n b_n < \lim_n a_n + \lim_n a_n$$

Exercice 6 (*). Objectif: prouver et utiliser un critère puissant de convergence.

- 1. Montrer l'énoncé suivant, appelé critère de condensation de Cauchy: Soit $(u_n)_{n=0}^{\infty}$ une suite décroissante positive. Alors $\sum_{k=0}^{\infty} u_k$ converge ssi $\sum_{k=0}^{\infty} 2^k u_{2^k}$ converge.
- 2. En déduire une nouvelle preuve que la série de Riemann $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$ converge ssi $\alpha > 1$.
- 3. Étudier la convergence de la série de Bertrand $\sum_{n\geq 2} \frac{1}{n\log(n)^{\alpha}}$ pour $\alpha\in\mathbb{R}$.