Série 4.1 – mardi 1 octobre 2024

Exercice 1. Objectif: bien connaître le comportement de la famille la plus simple de suites définies par récurrence: les récurrences affines du premier ordre.

Étant donnés $a, b, u_0 \in \mathbb{R}$, soit $(u_n)_{n \geq 0}$ la suite définie par $u_0 \in \mathbb{R}$ et $u_{n+1} = a \cdot u_n + b$ pour $n \geq 0$. Étudier la convergence de (u_n) en fonction des valeurs de a, b et u_0 .

Indications: (i) d'abord traiter le cas des suites arithmétiques (a = 1), puis (ii) le cas des suites géométriques (a \neq 1 et b = 0), puis (iii) pour les cas restants se ramener au cas (ii) en posant $v_n = u_n - \ell$ où $\ell = \frac{-b}{a-1}$.

Exercice 2. Objectif: identifier et appliquer un critère de convergence.

Soit $(u_n)_{n\geq 0}$ la suite réelle de terme général $u_n=\sum_{k=1}^n\frac{1}{n+k}$. Montrer que (u_n) converge.

Exercice 3. Objectif: rencontrer les suites définies par récurrence du second ordre.

Montrer que la suite $(x_n)_{n=0}^{\infty}$ définie par $x_0=3, x_1=2$ et

$$x_{n+1} = \sqrt[3]{x_n + x_{n-1}}$$

converge et calculer sa limite. Pour cet exercice, on suppose connue la fonction $x \mapsto \sqrt[3]{x}$. Indication: montrer par récurrence que $1 < x_{n+1} < x_n < x_{n-1}$.

Exercice 4. Objectif: calculer lim sup et lim inf.

On considère la suite $(x_n)_{n=1}^{\infty}$ définie par

$$x_n = \begin{cases} \sin\left(\frac{1}{n}\right) & \text{si } n \text{ est pair,} \\ \cos\left(\frac{1}{n}\right) & \text{si } n \text{ est impair.} \end{cases}$$

Calculer $\limsup_{n\to\infty} x_n$ et $\liminf_{n\to\infty} x_n$.

Exercice 5. Objectif: manipuler la definition de convergence d'une suite.

Soit $(x_n)_{n\geq 0}$ la suite définie par $x_n = \sqrt[n]{n}$ pour $n\geq 1$ et $x_0=0$. Démontrer que $\lim_{n\to\infty} x_n=1$. Indication: Démontrer que $\forall \delta>0$, $\lim_{n\to\infty} \frac{n}{(1+\delta)^n}=0$ et conclure.

Exercice 6. Objectif: manipuler la notion de sous-suite.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle telle que les sous-suites $(u_{n^2})_{n\in\mathbb{N}}$, $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge.

Indication: on pourra utiliser le résultat simple suivant: si une suite réelle (v_n) converge vers ℓ , alors toute sous-suite de (v_n) converge vers ℓ .

Exercice 7(*). Objectif: apprendre à faire des constructions et poser les bons objets.

Montrer que de toute suite on peut extraire une sous-suite monotone.