Série 3.2 – jeudi 26 septembre 2024

Exercice 1. Objectif: appliquer les critères de convergence des suites.

Montrer que la suite (u_n) de terme général $u_n = \frac{\log(n!)}{5^n}$ converge et calculer sa limite. Indication: utiliser la relation $\log(k) \le k$, $\forall k \in \mathbb{N}^*$.

Exercice 2. Objectif: revenir plus en détail sur les cæfficients binomiaux (à connaître!)

Pour $k, n \in \mathbb{N}$, $k \leq n$, on définit le cæfficient binomial $\binom{n}{k} = \frac{n!}{k!(n-k)!}$. On rappelle la définition de factorielle n: $n! = \prod_{k=1}^{n} k$ et 0! = 1.

- 1. Justifier que $\binom{n}{k}$ est égal au nombre de parties (=sous-ensembles) à k éléments dans un ensemble à n éléments (pour cela que l'on désigne aussi $\binom{n}{p}$ par l'expression "p parmi n").
- 2. En déduire, par un raisonnement de dénombrement, la relation de Pascal, pour $1 \le k < n$,

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

3. Montrer (par un raisonnement de dénombrement, c'est-à-dire en comptant le nombre de fois où chaque terme apparaît) que pour tout $x, y \in \mathbb{R}$ et tout entier $n \geq 1$, on a la formule du binôme de Newton:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

Remarque: Les questions 2. et 3. sont indépendantes. Il est aussi possible de démontrer ces deux formules par récurrence (même si je trouve la preuve moins éclairante): dans ce cas, on a besoin de 2. pour démontrer 3.

Exercice 3. Objectif: critère de convergence des suites, et (une) construction du nombre e

On définit $x_n = \left(1 + \frac{1}{n}\right)^n$, pour $n \in \mathbb{N}^*$. Démontrer que la suite $(x_n)_{n=1}^{\infty}$ converge et que $\lim_{n\to\infty} x_n \in]2,3]$. Le nombre $\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n$ est important en analyse; c'est le nombre d'Euler e.

Indications:

1. En utilisant la formule du binôme de Newton, démontrer que

$$\left(1 + \frac{1}{n}\right)^n \le \sum_{k=0}^n \frac{1}{k!}.$$

- 2. En utilisant que $\lim_{n\to\infty}\sum_{k=0}^n\frac{1}{2^k}=2$, en déduire que la suite $(x_n)_{n=1}^\infty$ est bornée.
- 3. En utilisant la formule du binôme de Newton, démontrer que la suite $(x_n)_{n=1}^{\infty}$ est croissante.

Exercice 4(*). Objectif: persévérer pour résoudre un exercice plus délicat, raisonner avec les " ϵ ".

Soit $(x_n)_{n=0}^{\infty}$ une suite de nombres réels positifs qui est sous-additive, ce qui signifie par définition que:

$$x_{n+m} \leq x_n + x_m, \quad \forall m, n \in \mathbb{N}.$$

 $x_{n+m} \leq x_n + x_m, \quad \forall m,n \in \mathbb{N}.$ Démontrer que la suite $\left(\frac{x_n}{n}\right)_{n=1}^{\infty}$ converge vers inf $\{x_n/n \; ; \; n \in \mathbb{N}\}$. Donner cependant un exemple qui montre que la suite $\left(\frac{x_n}{n}\right)_{n=1}^{\infty}$ n'est pas nécessairement monotone.