Série 14.2 – jeudi 18 décembre 2024

Intégration 1

Exercice 1. Intégrales généralisées.

Discuter (en fonction de $\alpha > 0$ si présent) la convergence des intégrales suivantes:

1.
$$\int_{0+}^{\frac{\pi}{2}} \log(\sin t) dt$$

$$2. \int_{0+}^{1-} \frac{t^{\alpha}}{\sqrt[4]{t^3(1-t)}} dt$$

2.
$$\int_{0+}^{1-} \frac{t^{\alpha}}{\sqrt[4]{t^3(1-t)}} dt$$
 3. $\int_{3}^{+\infty} \frac{dt}{t(\log t)(\log(\log t))^{\alpha}}$

Exercice 2. Une intégrale semi-convergente.

Montrer que l'intégrale $\int_{\pi}^{+\infty} \frac{\sin(t)}{t} dt$ converge et qu'elle ne converge pas absolument.

Exercice 3. Intégrabilité et convergence (exercice proposé lundi par certains d'entre vous!)

Vrai ou faux? Soit $f: \mathbb{R}_+ \to \mathbb{R}_+$ une fonction uniformément continue telle que $\int_0^{+\infty} f(x) dx$ converge. Alors f converge vers 0 en $+\infty$. (Si c'est vrai, le prouver, si c'est faux, donner un contre-exemple).

Exercice 4 (*). Étude d'une famille d'intégrales.

1. Calculer pour $n \in \mathbb{N}$ l'intégrale

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n(x) dx$$

- 2. Montrer que $\frac{I_{n+1}}{I_n} \xrightarrow[n \to +\infty]{} 1$.
- 3. En déduire l'identité suivante:

$$\pi = \lim_{n \to +\infty} \frac{1}{n} \left(\frac{2 \cdot 4 \cdot 6 \cdots 2n}{1 \cdot 3 \cdot 5 \cdots (2n-1)} \right)^2$$

Exercice 5 (**). Démonstration de la formule de Stirling.

L'objectif de cet exercice est de démontrer la formule de Stirling (version de Robbins, 1955), qui donne une approximation assez précise de n!:

$$\forall n \in \mathbb{N}, \exists \theta_n \in (0,1) \text{ t.q. } n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \cdot e^{\frac{\theta_n}{12n}}.$$

1. Utiliser la formule de Taylor-Maclaurin pour $x=\frac{1}{2n+1}$ et $\ln\frac{1+x}{1-x}$ et déduire que

$$\ln\left(1+\frac{1}{n}\right) = \sum_{k=0}^{\infty} \frac{2}{(2k+1)(2n+1)^{2k+1}}$$

puis que

$$1 \le \left(n + \frac{1}{2}\right) \ln \frac{n+1}{n} < 1 + \frac{1}{12n(n+1)}$$

et donc

$$1 < \frac{1}{e} \left(\frac{n+1}{n} \right)^{n+\frac{1}{2}} < e^{\frac{1}{12n(n+1)}}.$$

2. Soit $x_n = \frac{n!}{e^{-n}n^n\sqrt{n}}$. Montrer que

$$1 \le \frac{x_n}{x_{n+1}} \le e^{\frac{1}{12n} - \frac{1}{12(n+1)}}$$

et que l'on a $L := \lim_{n \to +\infty} x_n = \lim_{n \to +\infty} e^{-\frac{1}{12n}} x_n$. En déduire qu'il existe $\theta_n \in (0,1)$ t.q. $L = e^{-\frac{\theta_n}{12n}} x_n$.

3. Utiliser l'exercice précédent pour montrer que $L=\sqrt{2\pi}$, et conclure.

2 Une fonction continue partout, dérivable nulle part

Dans cet exercice, on se propose de construire une fonction continue sur \mathbb{R} et nulle part dérivable, la fonction de Takagi. Il s'agit de la fonction illustrée en première page des notes de cours. On considère la fonction $D: \mathbb{R} \to \mathbb{R}, x \mapsto \min\{|x-n| \; ; \; n \in \mathbb{Z}\}$ mesurant la distance entre un réel x et l'entier le plus proche. On considère la suite de fonctions $f_n: \mathbb{R} \to \mathbb{R}$ définie par

$$f_n(x) = \sum_{k=0}^{n} \frac{1}{2^k} D(2^k x).$$

- 1. Montrer que (f_n) converge simplement vers une fonction f. Cette fonction est appelée fonction de Tagaki.
- 2. Montrer que la convergence de (f_n) vers f est uniforme.
- 3. Montrer que f est uniformément continue.
- 4. On veut maintenant montrer que f n'est dérivable nulle part. Soit donc $x_0 \in \mathbb{R}$ et montrons que f n'est pas dérivable en x_0 .
 - (a) Pour $n \in \mathbb{N}$, on introduit $a_n = \ell 2^{-n}$ et $b_n = (\ell + 1)2^{-n}$, où $\ell \in \mathbb{Z}$ est l'unique entier relatif tel que $a_n \le x_0 < b_n$. Exprimer $f(a_n)$ et $f(b_n)$ comme des sommes finies.
 - (b) (*) On considère la suite des pentes $p_n = \frac{f(b_n) f(a_n)}{b_n a_n}$ pour $n \in \mathbb{N}$. Montrer que (p_n) n'est pas convergente.
 - (c) En déduire que f n'est pas dérivable en x_0 .

3 Quelques révisions

Exercice 1.

Soient (α_n) et (β_n) deux suites numériques bornées à valeurs dans \mathbb{R}_+ . Démontrer que

$$\limsup_{n \to \infty} \alpha_n \cdot \beta_n \le \left(\limsup_{n \to \infty} \alpha_n \right) \cdot \left(\limsup_{n \to \infty} \beta_n \right)$$

Exercice 2 (*).

Soit $(a_n)_{n=0}^{\infty}$ une suite numérique et soit $\sum_{n=0}^{\infty} a_n x^n$ la série entière correspondante. On suppose que son rayon de convergence R est non nul.

1. Démontrer que si $(\alpha_n)_{n=0}^\infty$ est une suite numérique telle que

$$\limsup_{n \to \infty} |\alpha_n|^{\frac{1}{n}} \le 1,$$

alors le rayon de convergence \tilde{R} de la série entière $\sum_{n=0}^{\infty} a_n \alpha_n x^n$ satisfait $\tilde{R} \geq R$.

2. Montrer que si $\lim_{n\to\infty} \sqrt[n]{|\alpha_n|} = 1,$ alors $\tilde{R} = R.$

Exercice 3.

On considère la fonction $f: \mathbb{R}_+^* \to \mathbb{R}_+^*$ définie par $f(x) = x^{1/x}$.

- 1. Calculer les limites à droite de 0 de f et de f'.
- 2. Calculer les limites en $+\infty$ de f et f'.
- 3. Déterminer le maximum de f.

Exercice 4.

Montrer que si $f: \mathbb{R} \to \mathbb{R}$ vérifie $f(n) = n, \, \forall n \in \mathbb{Z}$ et f convexe alors $f(x) = x, \, \forall x \in \mathbb{R}$.