Série 1.2 – jeudi 12 septembre 2024

Exercice 1. Objectif: s'entraîner aux manipulations de sommes et aux preuves par récurrence (bien rédiger!).

Montrer que pour tout entier $n \ge 1$, $\sum_{k=1}^n k = \frac{n(n+1)}{2}$. En déduire par récurrence que pour tout entier $n \ge 1$: $\left(\sum_{k=1}^n k\right)^2 = \sum_{k=1}^n k^3$.

Exercice 2. Objectif: comprendre les notions de sup/max/inf/min.

Pour chacun des ensembles suivants, dire s'il est majoré, minoré ou borné. S'il est majoré, donner son supremum (dans \mathbb{R}) et dire s'il s'agit d'un maximum. S'il est minoré, donner son infimum (dans \mathbb{R}) et dire s'il s'agit d'un minimum. Justifier votre réponse.

1. $\{x \in \mathbb{R} : 0 \le x \le 1\},\$

4. $\{x_n = \frac{1}{n}, n \in \mathbb{N}^*\},\$

2. $\{x \in \mathbb{Q} : 0 < x < 1\},\$

5. $\{x_n = \frac{(-1)^n}{n}, n \in \mathbb{N}^*\}.$

3. $\{x_n = (-1)^n, n \in \mathbb{N}\},\$

6. $\{x_n = \frac{1+(-1)^n}{n} - n^2 ; n \in \mathbb{N}^*\}$

Exercice 3. Objectif: raisonner avec des inégalités. Rappels sur la formule du binôme.

Nous souhaitons prouver l'existence de $\sqrt{2}$ dans \mathbb{R} , et plus généralement, l'existence de racines $n^{\text{èmes}}$ dans \mathbb{R} . Soient $a \in]1, +\infty[$ et $n \in \mathbb{N}^*$; nous allons montrer qu'il existe un élément b de \mathbb{R}_+ tel que $b^n = a$. On pourra utiliser sans preuve que pour $x, y \in \mathbb{R}_+$, on a $(x \leq y) \Leftrightarrow (x^n \leq y^n)$ (voir Ex.4.2 de la série 1.1). Soit

$$E = \{x \in \mathbb{R}_+ : x^n < a\}.$$

- 1. Montrer que E admet une borne supérieure b (un suprémum), et qu'elle satisfait $b \ge 1$.
- 2. Supposons $b^n < a$. On veut montrer qu'il existe $\alpha \in \mathbb{R}_+^*$ tel que $(b+\alpha)^n < a$ pour aboutir à une contradiction.
 - (a) Montrer que pour $\alpha \in [0, 1[$, on a

$$(b+\alpha)^n - b^n < (2^n - 1)b^{n-1}\alpha.$$

Indication: on rappelle la formule du binôme de Newton $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$ (pour $x,y \in \mathbb{R}$ et $n \in \mathbb{N}$) où $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ sont les coefficients binomiaux, qui satisfont notamment $\binom{n}{k}$

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n \qquad et \qquad \binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{k}, \forall k, n \in \mathbb{N}^* \ avec \ k \le n-1.$$

- (b) En déduire l'existence d'un réel $\alpha \in]0,1[$ tel que $b+\alpha \in E,$ et donc une contradiction.
- 3. Supposons $b^n > a$. Montrer de manière analogue qu'il existe $\beta \in]0, b[$ tel que $(b \beta)^n > a$ et en déduire une contradiction.
- 4. Conclure que $b^n = a$ et donc de l'existence de racines $n^{\text{èmes}}$ positives pour $a \in]1, +\infty[$. Q'en est-il pour $a \in [0, 1]$?

NB: ce résultat sera beaucoup plus facile à démontrer quand nous aurons vu d'autres outils (continuité et dérivabilité de fonctions).

La première formule s'obtient en prenant x = y = 1 dans la formule du binôme et la seconde peut se démontrer par récurrence (ou par un raisonnement combinatoire). Ces formules doivent être bien maîtrisées, révisez-les!