

-> la convergence préserve peu de propriétés. Introduison une notion plus forte de convergence.

Def: On dit que (
$$f_n$$
) converge uniformément vers f ssi :
 $\forall \varepsilon > 0$, $\exists N \in IN$, $\forall n \geqslant N$, $\forall x \in D$, $|f_n(x) - f(x)| < \varepsilon$
On chaint x après N (contrairement à la congre rimple)

$$\operatorname{Rm}_{q:*}\left\{\int_{n}^{n} \frac{u \operatorname{d}}{u \operatorname{d}} f\right\} \iff \left\{\int_{n\to\infty}^{n} \left(\sup_{x \in \mathbb{D}} \left|\int_{n}(x) - f(x)\right|\right) = 0\right\} \iff \left\{\int_{n}^{n} \frac{u \operatorname{d}}{u \operatorname{d}} f\right\} \iff \left\{\int_{n}^{n} \frac{u \operatorname{d}}{u \operatorname{d}}$$

Thm. Sait $I \subset \mathbb{R}$ un intervalle at (f_n) suite dans $C^{\circ}(I)$, f_q . In said Alory $f \in C^{\circ}(I)$.

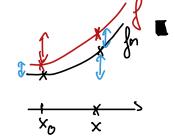
Preuve: Soit $x_0 \in I$ et montrons que f est continue en x_0 . Soit $\varepsilon > 0$.

* $\exists n \in \mathbb{N}$, $\forall x \in I$, $|\int_{\mathbb{N}} (x) - \int_{\mathbb{N}} (x)| < \frac{\varepsilon}{3}$ ($\varepsilon = cvgce unif.$)

(forcatione $\varepsilon > 0$) * $\exists S > 0$, $\forall x \in I$, $(|x - x_0| < S = 0)$ $|\int_{\mathbb{N}} (|x| - \int_{\mathbb{N}} (|x_0|)| < \frac{\varepsilon}{3}$)

Alors $\forall x \in I$ t.q. $|x - x_0| < S$ on a

 $| f(x) - f(x_0) | \ll | f(x) - f_n(x) | + | f_n(x) - f_n(x_0) | + | f_n(x_0) - f(x_0) |$ $< \frac{\xi}{3} + \frac{\xi}{3} + \frac{\xi}{3} = \xi$. Denc f continue on x_0 . Comme xo arbitraire, cela montre $f \in C^{\circ}(I)$



Ainsi dans l'exemple B] la convergence n'est par uniforme (limite & discontinne)

Andre example: Poton $f_n(x) = 1 + \frac{1}{n}x$, $\forall x \in \mathbb{R}$ et $n \in \mathbb{N}$.

On a $\int_{n\to\infty}^{\sin pl} \int_{n\to\infty}^{\infty} dx = 1$, $\forall x \in \mathbb{R}$.

 $\sup_{x \in \Pi} |f_n(x) - f(x)| = \sup_{x \in \Pi} \frac{|x|}{n} = +\infty \quad \text{denc le cavergence n'est pas uniforme sun } \mathbb{R}$ $\text{En revarche} \quad \sup_{x \in [0,1]} |f_n(x) - f(x)| = \sup_{x \in [0,1]} \frac{|x|}{n} = \frac{1}{n} \xrightarrow[n \to \infty]{} 0$

Donc la convergence et uniforme sur [0,1].

Then de Dini. Scient a, b \in \text{IR, a < b et (fn) une suite dans $C^0([a,b])$. Si * $\int_{n} \int_{-\infty}^{\text{simpl.}} \int_{n} \text{ avec } \int_{n} \in C^0([a,b])$ et * (\int_{n}) ext crossante, c-\did -d, \text{Vn \in IN, }\text{Vx \in }[a,b], \int_{n+1}(x) \geq \int_n(x). Alors la convergence est uniforme: $\int_{n} \frac{\text{unif.}}{n \to \infty} \int_{n} .$

Prenve: Supposons par l'absunde que la convergence n'est pas uniforme, c-ai-d: $\exists \varepsilon > 0$, $\forall n \in \mathbb{N}$, $\exists m > n$, $\exists x \in [a,b]$, $|f_m(x) - f(x)| \geqslant \varepsilon$ (***)

Fixans un rel $\varepsilon > 0$. On peut construire deux suites $|f_m(x)| = |f_m(x)| = |f_m($

Comme (xi) et bonée, on peut (B, VV.) extraire une sous-suite (xie)een

qui converge, notons c sa limite. On a $c \in [a,b]$. Pour simplifier la notation, notons $(\tilde{X}_e) = (X_{i_e})$ et $(\tilde{N}_e) = (N_{i_e})$. * Comme $f_n \stackrel{\text{simp.}}{\longrightarrow} f$, $\exists N \in \mathbb{N}$, $|f_N(c) - f(c)| < \frac{\varepsilon}{6}$. * Come $\int e^{t} \int_{N} sort continues$, $\exists L \in \mathbb{N}$, $\forall l \geqslant L$, $\int |\int_{\mathbb{N}} |\int_{\mathbb{N}} |c| - \int_{\mathbb{N}} (\widetilde{x_{e}})| < \frac{\varepsilon}{6}$ Conne la suite (f_n) et croissante, on a pour $l \geqslant \max_{x \in \mathbb{N}} N$, L_y : (x *) (x *)

par crossènce de $(f_n)^2 = (f_n)^2 = (f_n)^2$

Bien sûr, on a la nième conclusion sons l'hypothèse (fn) est décroissante.

Chapitre 4: Calcul différentiel

Préliminaire: Notation de Landau

Soient $f, g: D \to \mathbb{R}$ définies au voisinage de $x_0 \in \mathbb{R}$.

· Grand O":

On dit f est dominée par q au voisinage de xo ssi:

 $\exists C>0$, $\exists S>0$ tels give $\forall x \in D$, $\left(0<|x-x_0|< S=>|f(x)| < C\cdot |g(x)|\right)$

On note $\int = \mathcal{O}(g)$ on bien $\int (x) = \mathcal{O}(g(x))$ on put omettre x_0 si le cateste et clair,

• <u>"Petito:</u> on suppose que 35>0, 7x €] xo-5, xo+8[\{xot on a g(x) ± 0

On dit f est négligeable devant of an voisinage de κ_0 ssi lim $\frac{f(\kappa)}{f(\kappa)} = 0$

On note $\int_{x_0}^{x} g(g)$ as bien $\int_{x_0}^{x} (g(x))$

Exemples: . Au voisinage de zéro:

 $1000 = O(\frac{1}{100})^{3}$, 3cos(x) = O(1), x = o(1), $x^{2} = o(x)$, $\frac{1}{x} = o(\frac{1}{x^{2}})$

. Au voisinage de +00 (adopter la définition avec x0=+00):

x = O(1), $x = O(x^2)$ (en effet: $\exists C>0$, $\exists A>0$, $\forall x \geq A$, $[x] \langle C \cdot |x^2|$)

par exemple A = C = 1 $\frac{1}{x^2} = o\left(\frac{x}{x}\right) , \quad \sin(x) = o(1)$

J=O(q) ← JA>0, C>0, ∀x>A, If(x) (< Clg(x) » Détail de la définition: au voiringe de +00 $\int_{-\infty}^{\infty} \frac{1}{2\pi} \left(g \right) = \lim_{x \to +\infty} \frac{1}{2\pi} \left(\frac{x}{x} \right) = 0$

Remangners: x = o(1) = o(1) = 0 lim f(x) = 0 $x \to x_0$ lim f(x) = 0ensembles de fonctions. \Rightarrow La notation $f \in O(g)$ on o(g) serait plus correcte; mois moins commo de, \Rightarrow En particulier $f_1 = O(g)$ et $f_2 = O(g)$ \Rightarrow $f_1 = f_2$. The ce we sait per des égalités au sens mathématique.