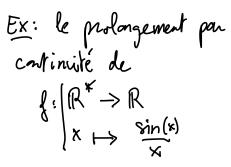
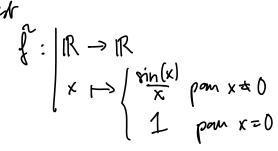
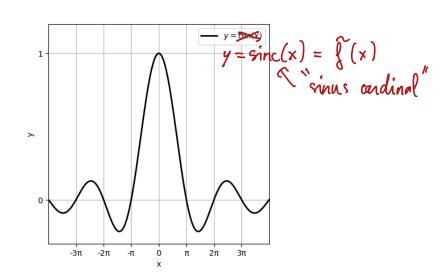
On note $f \in C^{\circ}(Ja,b[)$ (resp. $f \in C^{\circ}([a,b[)])$, etc... ensemble des fanctions continues sur] a, b[. Rmq: Soit I C R un intervalle. Luc ces définitions, on a: (f continue sur I) \Leftrightarrow $\forall x_0 \in I$, $\forall (x_n)_{n \ge N}$ dans I, ($\lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = f(x_n)$) Opérations préservant la continuité:

Règles algébriques: si f et g continues sur I alors: * $\forall \alpha \in \mathbb{R}$, αf , f + g, $f \cdot g$ sont continue, son I se déduit des propriétés * si g(x) * 0, Yx EI, alon & est continue sun I Composition: si f: I > J et g: J > IR continues alors go f et continue sur I. [livre mentioné: Marhemakica (D. Bessis)] En effor, Y(xn)new dans I to lim xn EI alors $g(f(\lim_{n\to\infty}x_n)) = g(\lim_{n\to\infty}f(x_n)) = \lim_{n\to\infty}g(f(x_n))$ -> Comme | R→R et continue on déduit que vonte fonction rationnelle et continue sur son domaine de définition (grace aux règles algébriques). -> On admet aussi (temporairement): exp, log, sin, cos continues sur leur domaine. Prolongement par continuité Sait $f: E \rightarrow \mathbb{R}$ définie au voisinage de $x_0 \notin E$ Si $\lim_{x \to x_0} f(x) = |E|\mathbb{R}$ alors

Si $\lim_{x\to x_0} f(x) = \lim_{x\to x$







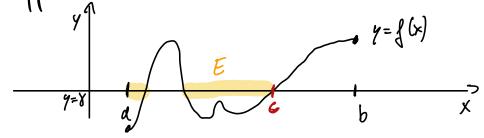
3. 3. 2 Thérème des valeurs intermédiaires (TVI)

Thm: Sait I c \mathbb{R} un intervalle et $f: I \rightarrow \mathbb{R}$ continve et $(a,b) \in I^2$ f.g $f(a) \ll f(b)$. Alors: $\forall \forall \in [f(a), f(b)]$, $f \in [a,b]$, $f(c) = \forall$.

"L'image d'un intervalle par une fonction continue est un intervalle"

Preuve: Trivial si X = g(a) on X = g(b). Considérons g(a) < X < g(b).

On suppose a < b (l'autre cas étant similaire).



Soit $E = \{x \in [a,b]; g(x) \le x\}$ Soit $c = \sup E \in \mathbb{R}$ qui existe con E est $\{majné pan b\}$

Mantrons que $f(c) = \delta$. $\forall n \in \mathbb{N}^*$, $\exists x_n \in E$ et $y_n \in [a,b] \setminus E$ tq $c - \frac{1}{n} \langle x_n \langle c \langle y_n \langle c + \frac{1}{n} \rangle \rangle$

connactérisate an algrégue du sup (> Existe con c < b (en effet (f continue en b)

Alors $x_n \underset{n \to \infty}{\longrightarrow} c$ et $y_n \underset{n \to \infty}{\longrightarrow} c$ et pou continuité de $f: \int \{(x_n) \underset{n \to \infty}{\longrightarrow} g(c) \}$
Mais Yn ∈ N, g(xn) < y et g(yn) > y d'an, n' la limite: y < g(c) <
Autre preuve possible: créer & scrites adjacentes par dicho Vornie (expliqué à l'oral)
Autre prense possible: créer 2 suites adjacentes par dichovanie (expliqué à l'oral) 3.3.3 Continuité sur un segment Segment = intervalle fermé borné: I = [a,b] avec a «b.
Thm: Scient a, b∈R, a < b et g: [a, b] → IR continue. Alors (i) g'est bornée et (ii) atteint ser bornes.
En combinant over le TVI, on a si $f: [a,b] \rightarrow \mathbb{R}$ continue alons
$f([a,b]) = [\min_{x \in [a,b]} f(x), \max_{x \in [a,b]} f(x)].$
"L'image d'un segment par une fonction continue est un segment".
Prenve du Thm:
(i) Supposons que f non majorée. $\forall n \in \mathbb{N}$, $\exists x_n \in [a,b]$ $t_q f(x_n) > n$ for $b - W$. $\exists une sous - suite (x_{n_k})_{k \in \mathbb{N}} telle que lim_{k \to \infty} x_{n_k} = c \in [a,k] Par continuité de f en c: f(x_{n_k}) \underset{k \to \infty}{\longrightarrow} f(c) \in \mathbb{R}$
for continuite de f en c: f(xnx) \int \int \gamma f(c) \in \text{IR}
Nois $\forall k \in \mathbb{N}$, $f(x_{n_k}) > n_k \geqslant k$ done $f(x_{n_k}) \xrightarrow{\rightarrow} +\infty$: contradic Danc f et majorée.
Le même raisannement appliqué à - 2 montre que f et minorée. Ainsi f et bornée.
(ii)
——————————————————————————————————————

Sait $\Pi = \sup_{x \in [a,b]} \int_{A}^{A} (x)$. $\forall n \in \mathbb{N}$, $\exists x_n \in [a,b]$, $\Pi = \lim_{x \in [a,b]} \int_{A}^{A} (x_n) \langle x_n \rangle \langle x$ Pan B-W, I une sons-suite (Xnx) ty lim Xnx = d E[1, b] On a alors $\lim_{k\to\infty} f(x_{n_k}) = \begin{cases} 17 & \text{par } (*) \\ f(d) & \text{par continuité} \end{cases}$ Ainsi 7 d E [a, b] , M = g(d). (Raisonnement analogue pour le minimum) 3-3.4 Continuité et monotonie Thm: Soit I un intervalle et f: I -> IR continue. Alors: finjective (=) f strictement monotone

Contre-exemple si f par continue: y 1 = ((x)

Prenve: El Immédiat car si X1, X2 EI avec X, < X2 alors

alors $\begin{cases} s = 1 \\ s = 1 \end{cases}$ $\begin{cases} (x_1) < f(x_2) \\ s = 1 \end{cases}$ denc $f(x_1) \neq f(x_2)$ denc les 2 cas.

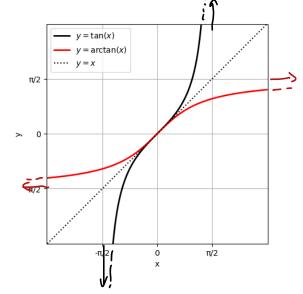
=> Soient a, b \in I, a < b. On suppose \{(a) < \{(b) (est similaire)} Supporous, par l'absurde, que f n'et pas strict. I sur [a,b]. $\exists x_1, x_2 \in [a,b]$, $x_1 < x_2 \text{ et } f(x_1) \ge f(x_2)$. f injective \Rightarrow $(f(x_1) > f(x_2))$ et $(f(x_1) < f(b))$ on $f(x_1) > f(b))$

• Si $f(x_i) < f(b)$ alors $f(x_i) < f(b)$

 $a \quad x_1 \quad x_2 \quad b$ Par le TVI, $\exists c \in [x_2, b]$ ty $f(c) = f(x_1)$ Comme $x_1 \notin [x_2, b]$ done $c \notin x_1 = c$ controdit f injective! • Si $f(x_1) > f(b)$ alos $f(a) < f(b) < f(x_1)$ l'an le TVI, $\exists c \in [a, x,] r_q \quad f(c) = f(b)$. Comme b & [a, x,] donc c + b => contredit f injective! On a montre que f est strict. I sur [a, b]. Comme a, b qu'elconques dans I, on montre ainsi que f est strict. matère Autre preuve possible pour => : par cakaposition. Non (f strict. mandae) (=) $\exists x_1, x_2, x_3, x_4 \notin I, k_9 \times_1 < x_2 \text{ et } x_3 < x_4 \text{ et } f(x_1) \ll f(x_2) \text{ et } f(x_3) \geqslant f(x_4)$ puis maker que f par injective en traitant différents cer (avec le TVI). Thm. Sat I, JCR des intervalles non vides et f: I > J surjective et strictement monotene. Alors: (i) I et continue, (ii) f admet une fartier réciproque f': 5=I continue et strictement monotone. Preuve : exercice. Exemples: $R_+ \rightarrow R_+$ (surjective) $\times \mapsto \times^2$ (strict?) Réciproque: $R_+ \rightarrow R_+$ (surjective strict?) · co: [0, T] -> [-1, 1] $| \times \mapsto cos(x)$ (strict.), sinjective, continue) arcco : $[-1, \overline{1} \rightarrow [0, \pi]$ × + anccor(x)

Réciproque:

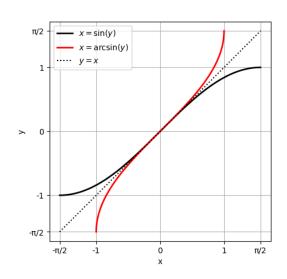
(strid.) , sinjective, continue)



tan:]===[> R

anchan: $\mathbb{R} \rightarrow \overline{J} - \overline{\xi}, \overline{\xi}$

(strict. 7, sinjectives, continues)



 $sin: \begin{bmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix} \rightarrow \begin{bmatrix} -1, 1 \end{bmatrix}$ $arcsin: \begin{bmatrix} -1, 1 \end{bmatrix} \rightarrow \begin{bmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix}$. (strict. 7, sujectives, continues)