Donc & n'adret pas de limite en 0.

1.0

0.5

> 0.0

-0.5

3.2.3 Propriétés que l'a déduit des limites de suites

Soit
$$\{g,g:D\to\mathbb{R},\lim_{x\to\infty}f(x)=1,\text{ et }\lim_{x\to\infty}g(x)=1\}$$

$$\underset{x \to \infty}{\text{lim}} (f \cdot g)(x) = l_1 \cdot l_2$$

* Si
$$l_2 \neq 0$$
 alos $\lim_{x \to \infty} (\frac{1}{2})(x) = \frac{l_1}{l_2}$

fin 09/10

. Conservation d'ordre: si $\exists S>0 \text{ t.g. } \forall x \in]x_0-S$, $x_0+S[\]\times_0 f$ on a f(x) < g(x) alors $l_1 < l_2$

Thm des gendannes/d'encadrement; Soient f, g, h; D -> R t.g.

•
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = \emptyset$$
.

3.2. 4 limite de fonctions composées

Thm: Soient f: D > R et g: E > R r.q Im(f) CE et h = g of.

Si (i) $\lim_{x \to x_0} f(x) = y_0 \in \mathbb{R}$

(ii) $\lim_{y \to y_0} g(y) = f \in \mathbb{R}$

(iii) $\exists S > 0$, $\forall x \in J \times_0 - S$, $\times_0 + S [\{ x_0 \} \text{ on a } f(x) \neq y_0 \}$

Alon $\lim_{x\to x_0} h(x) = \ell$.

Prenve: Soit $(a_n)_{n \in \mathbb{N}}$ une suite dans $D \setminus \{x_0\}$ to q dim $a_n = x_0$. Par (i) on a: $\lim_{n \to \infty} f(a_n) = y_0$. Par (iii) $\exists N \in \mathbb{N}$, $\forall n \ni N$, $f(a_n) \neq y_0$. One par (ii) $\lim_{n \to \infty} q(f(a_n)) = l$. Ceci montre $\lim_{x \to x_0} h(x) = l$

A Hypothèse (iii) est importante! Contre-exemple sons (iii):

Aloy $\forall x_0 \in \mathbb{R}$, $\lim_{x \to x_0} f(x) = 1$. et $\lim_{x \to x_0} g(f(x)) = \lim_{x \to x_0} 1 = 1 \neq \lim_{y \to 1} g(y) = 0$.

3.2.5 limites infinies et/on à l'infini

Def: Soit $f: D \rightarrow \mathbb{R}$ définie au roisinnage de +00, c-à-d $\overline{A} \in \mathbb{R}$, $\overline{A} + \infty [CD]$.

On dit que f admet par limite l quand x tend veus +00

(noté $\lim_{x\to +\infty} f(x) = l$) ssi $\forall \varepsilon > 0$, $\exists b > A$, $\forall x > b$, $|f(x) - l| < \varepsilon$

(définition analogue pour lim f(x)).

Def: Soit f: D > IR défine au voisinage de x, on + 00 on -00:

* lim f(x) = +00 (=> YT>0, 3>0, Yxe]x, 2-8, x,+5[1/x,/, /(x)> T

* lim f(x) = - 00 (=> YT <0, 38>0, Yx E] x0-8, x0+ S[1/x6/, (x) < T

* lim f(x) = + & => YT>0, FER, Yx >> , f(x) > M

Rmy: * Caractérisation à l'aide des suites possible ici aussi (exercice).

* Et donc an en déduit les nègles de comparaison, règles algébriques (y compris les formes indeterminées), c.f. Chap 1.

3.2.6 limite de fanctions monotones

Thm. Soit f: D -> IR croissante et définie au voisinage de +00.

* si f est majorée, alors $\lim_{x \to +\infty} f(x) = \sup_{x \in D} f(x)$

* si f n'et par majorée, alors lim $f(x) = +\infty$

Preuve:

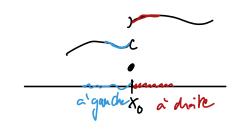
* Si f et majorée, soit $l = \sup_{x \in [0]} f(x)$. Soit $\epsilon > 0$,

 $\exists \alpha \in D$, $\ell - \epsilon \ll f(\alpha) \ll \ell$ (canact. analytique du sup). f croissonte, denc $\forall x \in D \cap J \alpha, +\infty \ell$, $\ell - \epsilon \ll f(\alpha) \ll f(x) \ll \ell$ Ainsi lim $f(x) = \ell$.

* Si f n'est par majorée: Soit $\Pi > 0$. $\exists \alpha \in D$, $f(\alpha) > M$.

Danc $\forall x \in D \cap J \alpha$, too[on a $f(x) \ge f(\alpha) > \Pi$ donc $\lim_{x \to +\infty} f(x) = +\infty$

3.2.7 limite à gauche on à droite Soit $f: D \rightarrow \mathbb{R}$ et $x, \in \mathbb{R}$.



Def. On dit que f et définie à droite de xo ssi 78>0, 7xo, xo+8[CD]

a' gauche de xo ssi 78>0, 7xo, xol CD.

Def. Si f définie à droite de x_0 . On dit que f admet une limite à draite en x_0 ssi : il existe $f \in \mathbb{R}$ f . g: $f \in \mathbb{R}$ $f \in \mathbb{R}$ f: $f \in \mathbb{R}$ $f \in \mathbb{R}$ f: $f \in \mathbb{R}$ $f \in \mathbb{R}$ f

On dit que $\int \frac{t - d}{x} dx dx = \frac{1}{2} \left(\frac{1}{2} \left$

Rmg: * Canactérisation à l'aide des suites:

 $\lim_{x \to x_0^+} f(x) = \ell \iff \begin{cases} \forall (a_n)_{n \in \mathbb{N}}, & a_n \in \mathbb{D} \cap \mathbb{I} \times_0, +\infty[\ \mathcal{I} \text{ in } a_n = \times_0 \\ a_n = \lim_{n \to \infty} f(a_n) = \ell \end{cases}$

- * définitions analogues pour limite à janche, notée lim f(x) on lim f(x).
- * Si f définie au voisinage le x, alors, pau lERV}-00,+009, $\lim_{x\to\infty} \int \{x\} = \ell \iff \left(\lim_{x\to\infty} \int \{x\} = \lim_{x\to\infty} \int \{x\} = \ell\right) \quad (\text{exercise}).$
- * Si $f:D \to \mathbb{R}$ croissante et définie au voisinage de x_0 . Alon f admet une limite à droite de x_0 et une limite à gauche de x_0 et en a

(Preuve: analogue au § 3.2.6) $\lim_{x \to x^{-}} f(x) < \lim_{x \to x^{+}} f(x)$

3.3 Fondrians continues

3.3.1 Cartinuité

Def. Soit $f: D \to \mathbb{R}$ définie au voisinage de $x_0 \in D$. On dit que f est continue en x_0 SSi $\lim_{x \to x_0} f(x) = f(x_0)$.

-> Caractérisations équivalentes de "f est continue en x.".

* $\forall \epsilon > 0$, $\exists \delta > 0$, $\forall_{x} \in D$ ($|x - x_{0}| < \delta \Rightarrow |\int_{a} (x_{0}) - \int_{a} (x_{0}) | < \epsilon$)

* $\forall (a_n)_{n \in \mathbb{N}}$ à valeur dans \mathbb{D} ($\lim_{n \to \infty} a_n = x_0 \implies \lim_{n \to \infty} f(a_n) = f(x_0)$)

Def: $\int discontinue en \times_0 (=) Non (\int ext continue en \times_6)$ $(=) \begin{cases} \lim_{x \to \infty} f(x) & \pm f(x_0) \\ \text{ou} \\ \text{lim } f(x) & \text{n'existe pay} \end{cases}$

Exemple: $f: \mathbb{R} \to \mathbb{R}$ $| \times \mapsto \times \text{ si } \times \in \mathbb{R}$ $| \text{ discontinue en } \times, \forall \times \in \mathbb{R}^*$

Def: Sait $j: D \to \mathbb{R}$ définie à droite de $x_0 \in D$. On dit que j est continue à droite de x_0 si $\lim_{x \to x_0^+} f(x) = f(x_0)$ (à gauche) $(x \to x_0^-)$

Def: Soit a, b \(\in \mathbb{R} \text{ U}_1 - \in \in \), + \(\in \text{ of avec a < b} \)

* On dit que \(\in \text{ et continue sun } \] a, b \(\in \text{ ssi } \) \(\in \text{ et continue en } \(\text{x}, \text{ \text{ \text{ \text{ \text{ on dir que } en } x}, \text{ \text{ \text{ \text{ \text{ \text{ on dir que } en } x}, \text{ \text{ \text{ \text{ \text{ \text{ \text{ on dir que } en } x}, \text{ \text{ \text{ \text{ \text{ \text{ on dir que } en } x}, \text{ \text{ \text{ \text{ \text{ \text{ \text{ on dir que } en } x}, \text{ \text{ \text{ \text{ \text{ \text{ \text{ on dir que } en } x}, \text{ \text{ \text{ \text{ \text{ \text{ on dir que } en } x}, \text{ \text{ \text{ \text{ \text{ \text{ on dir que } en } x}, \text{ \text{ \text{ \text{ \text{ \text{ on dir que } en } x}, \text{ \text{ \text{ \text{ \text{ \text{ \text{ on dir que } en } x}, \text{ \text{ \text{ \text{ \text{ \text{ \text{ on dir que } en } x}, \text{ \text{ \text{ \text{ \text{ \text{ \text{ on dir que } en } x}, \text{ \text{ \text{ \text{ \text{ \text{ \text{ on dir que } en } x}, \text{ on dir que } en } x}, \text{ on dir que } en } x}, \text{ \tex

I of continue à draite en a.

On note $f \in C^{\circ}(Ja,bL)$ (resp. $f \in C^{\circ}(La,bL)$), etc...

ensemble des fonctions continues sur Ja,bL.

Reg.: Soit $I \subset R$ un intervalle. Avec ces définitions, on a:

(f continue sur $I) \in V \times_{o} \in I$, $V \times_{o} \setminus_{n>\infty} V \times_{o} = V \times_{o} =$

Composition: si $f: I \to J$ et $g: J \to \mathbb{R}$ continues alors $g \circ f$ et continue sur J.