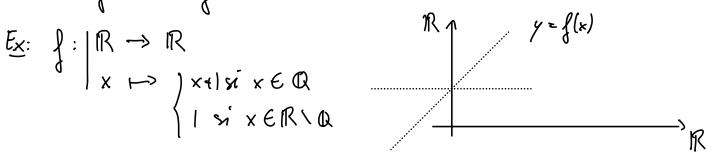
Chap. 3: Fonctions réelles, limites, continuité

Etude de fanctions f: D -> R avec D C R non vide.

$$\begin{array}{c|c} E_{X}: & \int : |\mathbb{R} \to \mathbb{R} \\ & \times \mapsto & \times + 1 \text{ s. } \times \in \mathbb{Q} \\ & & \times : \times \in \mathbb{R} \setminus \mathbb{Q} \end{array}$$



* Structure héritée des néels : si f, g : D → IR et a, B EIR

Deirations:
$$\alpha f + \beta g : |D \rightarrow R|$$

| X → $\alpha \cdot f(x) + \beta g(x)$

| X → $f(x) \cdot g(x)$

• Ordre partiel: $f \leqslant g \iff f(x) \leqslant g(x), \forall x \in D$.

3.1 Définition et vocabulaire

Soit A C D = don (f) non-vide. image de A par f.

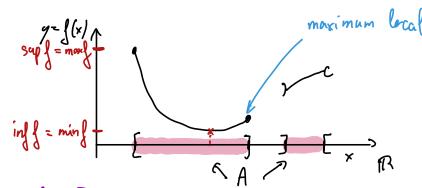
Def: ** On dit que f est {majorée} sur A si l'ensemble f(A) est minarée ; sur A si l'ensemble f(A) est minarée ; sonée.

* On définit | sup $f(x) = \sup_{x \in IA} f(A)$ le <u>supremum</u> de f sur A (+00 si f(A) non majoré) inf $f(x) = \inf_{x \in A} f(A) = \inf_{x \in A} f(A)$ l' infimum de f sur A (-00 si f(A) non minoie)

* S'îl existe $\bar{x} \in D$ t. q sup $f(x) = f(\bar{x})$ on dit que f atteint (argmin) son maximum en \bar{x} , On note max $f(x) = f(\bar{x})$ et $\bar{x} \in angmax f(x)$.

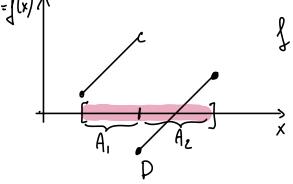
* S'il existe $x_0 \in D$ et S > 0 t.g f restreinte à $\int x_0 - S$, $x_0 + S [n D]$ atteint son maximum en x_0 , on dit que fadmet un maximum local en x_0 .

* Un extremum (local) en x = xo est minimum (local) on un maximum (local)



(f: D° NR, ACD Def: \star f est dite est croissante sun A si $\forall x_1, x_2 \in A$, $(x_1 < x_2 \Rightarrow f(x_1) \ll f(x_2))$ (décroissante)

- * f et dite et stridement vroissante sur A si $\forall x_1, x_2 \in A$, $(x_1 < x_2 \Rightarrow f(x_1) < f(x_2))$
- * J'est dite (strictent) manotone si elle est soit (strictent) croissante, soit (strictent) décroissante.



of croissante sun A, et sun Az mais por croissante sur D=A, VAz.

Def: Si D est sy métrique par rapport à $O(c-a-d \forall x \in D, -x \in D)$ alors par $f: D \to \mathbb{R}$ an dit que: * fest paire si $\forall x \in D$, f(x) = f(-x)

- * f est imposise si $\forall x \in D$, f(-x) = -f(x)

Prop: Si D est symétrique par rapport à 0, toute fanction g: D→IR se décompose de manière unique en la somme d'une fanction poirre et d'une fantion impoire.

Preuve: En effet si $f = f_i + f_p$ est une telle décomposition alors $\forall x \in D$ $|f(x)| = f_p(x) + f_i(x) \qquad \qquad |f_p(x)| = \frac{f(x) + f(-x)}{2} \quad (pastie paire)$ $|f(-x)| = f_p(-x) + f_i(-x) = f_p(x) - f_i(x) \qquad |f_i(x)| = \frac{f(x) - f(-x)}{2} \quad (pastie impaire)$ les factions ainsi définies sont bien paire/impaire; cela démontre l'existence et l'unicité de la décomposition.

Def: Si $D = \mathbb{R}$, an dit que f et périodique s'îl existe $P \in \mathbb{R}^* + q$ $\forall x \in \mathbb{R}$, f(x+P) = f(x).

Dans ce con, l'est appelé une période de f. On vérifie, par récumence, qu'olors nl'est auni une période $\forall n \in \mathbb{Z}$, $n \neq 0$

Ex: L'ensemble des périodes de * $f: |\mathbb{R} \to \mathbb{R}$ est $\{2k\pi, k\in\mathbb{Z}^*\}$

* g: |
$$\mathbb{R} \to \mathbb{R}$$

| $\times \mapsto \begin{cases} 1 \text{ si } \times \in \mathbb{R} \\ 0 \text{ si } \times \in \mathbb{R} \end{cases}$ et l'ensemble \mathbb{R}^*

Def: * Partie positive: $f^{+}: |D \rightarrow R|$, partie négative: $f^{-}: |D \rightarrow R|$ $|x \mapsto \max\{0, f(x)\}|$ $|x \mapsto \max\{0, f(x)\}|$ $= -\min\{0, f(x)\}$ $= -\min\{0, f(x)\}$

3.2 limites de fanctions réelles.

3.2.1 Définitions

Def: Soit $x_0 \in \mathbb{R}$. On dit f et définie au voisinage de x_0 s'il existe S>0, $J \times_0 - S$, $x_0 + S[-c(D \cup \{x_0\})]$

$$\begin{array}{c|c}
Ex: & \int : | \mathbb{R}^* \to \mathbb{R} \\
 & \times \mapsto \frac{\sin(x)}{x}
\end{array}$$

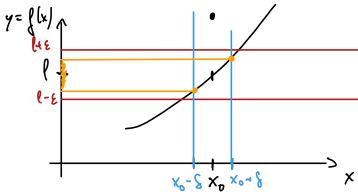
.
$$\int : |\mathbb{R}^* \to \mathbb{R}$$

 $|\times \mapsto \frac{\sin(x)}{\times} \quad \text{définie an voisinneg de } 0$
 $|\times \mapsto \frac{\sin(x)}{\times} \quad \text{can } \forall s > 0, \quad]-s, s[c] \mathbb{R}^* \cup \{0\} = \mathbb{R}$

og:
$$| \mathbb{Q} \to \mathbb{R}$$
 définie en voisinage d'aucun point (par densité de $\mathbb{R} \setminus \mathbb{Q}$ dons \mathbb{R}).

Def: Soit $f: D \rightarrow \mathbb{R}$ une fonction définie au voisinage de $x_0 \in \mathbb{R}$ et $l \in \mathbb{R}$. On dit que f admet pour limite l en x_0 (noté lim f(x) = l on $\lim_{x \to x_0} f(x) = l$)

$$SSi: \forall \varepsilon > 0, \exists \delta > 0, \forall x \in D, (0 < |x - x_0| < \delta \Rightarrow |f(x) - \ell| < \varepsilon)$$



$$\int_{X} (x_0) \neq \lim_{x \to x_0} \int_{X} (x)$$

{(4/1) = 4/4 C 1/1/1 √

3.2.2 Caractérisation à l'aide de suites

Thm: Soit $f: D \to \mathbb{R}$ une fonction définie au voisinage de x_0 et $l \in \mathbb{R}$. Alors: $\lim_{x \to \infty} f(x) = l \iff \int V(a_n)_{n \in \mathbb{N}} \text{ suite d'éléments de } D \setminus \{x_0\} \text{ t. g lim } a_n = x_0 \text{ on } a \text{ lim } f(a_n) = l$

Preuve: => Soit (an) new une suite dans D\{x_0\} t. q lim an = x_0. Soit &> 0.

Conve lim f(x)=1, 38>0, 4x ED, (0<|x-x0|<8 => 1f(x)-1<|<E)

Comme lin an = xo, FNEN, Yn, N, O< |an-xo|< S.

Ainsi on a $\forall n \geq N$, $| g(a_n) - \ell | \leq \varepsilon$. Donc $\lim_{n \to \infty} g(a_n) = \ell$.

Supposas nan(A): $\exists \varepsilon > 0$, $\forall \varepsilon > 0$, $\exists x \in D$ t. g $0 < |x - x_0| < \varepsilon$ et $|g(x) - l| \ge \varepsilon$ En prenant $S_n = \frac{1}{n}$, ceci implique l'existence d'une suite $(x_n)_{n \in \mathbb{N}}$ $t \cdot q$:

 $0 < |x_n - x_0| < \delta_n = \frac{1}{N}$ et $|\int_{\mathbb{R}} (x_n) - \ell| \geqslant \varepsilon$, $\forall n \in \mathbb{N}$. On a danc: $x_n \in D \setminus \{x, y\}$, $\lim_{n \to \infty} x_n = x_0$ et $(\int_{\mathbb{R}} (x_n))$ ne converge parvers ℓ . On a danc marké nan (B).

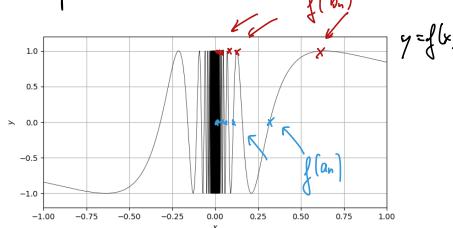
Rmq: » Par unicité de la limite d'une suite, la limite d'une faction est unique.

* Pour montrer que lim f(x) n'existe par, on peut construire 2 suites (an) et (bn) dans D (x_0y) convergeant veux x_0 et (x_0y) et

· On pose $a_n = \frac{1}{2\pi n}$, $n \in \mathbb{N}^*$ on a lim $a_n = 0$ et lim $f(a_n) = \lim_{n \to \infty} \sin(2\pi n) = 0$

· On pose $b_n = \frac{1}{2 \text{tint} \xi}$, $n \in \mathbb{N}$, on a limbn=0 et lim $f(b_n) = \lim_{n \to \infty} \sin(2 \text{tint} \xi) = 1$

Donc & n'adout pos de limite en 0.



3.2.3 Propriétés que l'a déduit des limites de suites

Soit $g, g: D \rightarrow \mathbb{R}$, $\lim_{x \to x_0} f[x] = l_1$ alon:

* Ya, BER, lim (af + Bg)(x) = a.l, + Bl2.

 $\underset{x \to \infty}{\text{lim}} (j \cdot g)(x) = l_1 \cdot l_2$

s s $l_2 \neq 0$ alon $\lim_{x \to \infty} (\frac{l}{s})(x) = \frac{l_1}{l_2}$

fin 09/10