- (i) Supposans (un) majorée. Soit $\alpha = \sup \{u_n ; n \in \mathbb{N}\}$, et soit $\epsilon > 0$.
 Par la caractérisation analytique du sup: $\exists n_0 \in \mathbb{N}$ t. $q \in \mathbb{N}$ $\in \mathbb{N}$ Comme (un) est croissante, on a $\forall n \geq n_0$, $0 \leqslant \alpha u_n \leqslant \alpha u_n \leqslant \epsilon$ donc $\lim_{n \to \infty} u_n = \alpha$
- (ii) Supporous (un) non majorée. Soit A > 0. Aloro F no FN, uno > A.

 Comme (un) est croissante, on a fr> no, un > uno > A danc lim un = +00.

Point méthode (suites définies par récumence): Soit $(u_n)_{n \in \mathbb{N}}$ définie par $u_n \in \mathbb{R}$ Q] Etadier la convergence de (u_n) ? $u_{n+1} = g(u_n)$ avec $g: A \to \mathbb{R}$

- o) Vérifier que (un) et bien définie (c-à-d que 4n EN, un EA)
- 1) Si (un) converge van lER et g et continue en l'alors l=g(l)

 > purmet d'isoler les candidates pour l.
- 2/ Calculer quelques termes et von faire un graphe.

3/ Essayer de montrer que (un) est la croissante et majorée (se servir du l'candidat).
4/ Conclure.

Thm (critère de D'Alembert). Sait $(u_n)_{n \ge 0}$ une suite t.q $\begin{cases} u_n \ne 0, \forall n \in \mathbb{N} \\ \lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = e \in \mathbb{R} \end{cases}$.

· Si p > 1 alors alors (un) diverge

Ring: si
$$e=1$$
, on ne par concluse en général, par ex: $u_n=n$, $n\in\mathbb{N}$

Prenve: 1) Supporary $e<1$. Comme $\lim_{n\to\infty}\left|\frac{u_{n+1}}{u_n}\right|=e$

In $e\in\mathbb{N}$, $\forall n\geqslant m$, $\left|\frac{|u_{n+1}|}{|u_n|}-e\right|\leqslant \frac{1-e}{2}$

of $donc\left|\frac{u_{n+1}}{|u_n|}\right|\cdot \frac{|u_{n+1}|}{|u_{n+1}|}\cdot \dots \cdot \frac{|u_{m+1}|}{|u_m|}\cdot |u_m|$

of $donc\left|\frac{u_{n+1}}{|u_n|}\right|\cdot \frac{|u_{n+1}|}{|u_{n+1}|}\cdot \dots \cdot \frac{|u_{m+1}|}{|u_m|}\cdot |u_m|$

Comme (y_n) tendrique

Comme (y_n) tend veus 0 , on an enclute par encouherment que (u_n) $\frac{1}{n\to\infty}$ 0

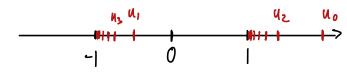
of $\frac{e^{-1}}{2}$
 $\frac{1-e^{-1}}{2}$
 $\frac{$

1. 4 limite supérieure et inférieure Soit (un)_{n>0} une suite bornée Pour n>0, porons yn = sup{u_n; k>n} = sup{u_n, u_{n+1}, u_{n+2},...} (y_n)_{n>0} est décroissante et minaée donc elle converge.

Def. On dit que limy, et la <u>limite supérieure</u> de (un)_{nzo} notée limsup un.

De même, on note liminf un = lim inf{ux; kznf, appelée la <u>limite inférieure</u>.

 E_{x} : (u_n) définie par $u_n = (-1)^n + \frac{1}{n+1}$, $\forall n \in \mathbb{N}$.



Alors $y_n = \sup \left\{ u_n : k \ge n \right\} = \sup \left\{ \left(-1\right)^k + \frac{1}{k+1} : k \ge n \text{ et } k \text{ pair } \right\}$ $= \begin{cases} 1 + \frac{1}{n+1} & \text{si } n \text{ pair} \\ 1 + \frac{1}{n+2} & \text{si } n \text{ impair}. \end{cases}$

D'ai limsup un = lim yn = 1.

Thm: Soit $(x_n)_{n_2}$ une suite bornée. Alon: (x_n) converge \iff $\limsup_{n\to\infty} x_n = \liminf_{n\to\infty} x_n$

Preuve: \Leftarrow Supposors limsup $x_n = \lim_{n \to \infty} \inf_{x_n \to \infty} x_n = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_{n \to \infty} x_n \right\} = \int_{\mathbb{R}} \mathbb{R} \exp \left\{ \sum_{n \to \infty} x_n + \sum_$

On a lim $y_n = \lim_{n \to \infty} z_n = l$ et $\forall n \in \mathbb{N}$, $z_n \ll x_n \ll y_n$ Donc par le thm. d'encadrement, on a (x_n) converge (vers l).

=> Supportons que (x_n) converge vers $\times \in \mathbb{R}$ et porons $|y_n = \sup_{n \to \infty} \{x_n ; k_{\geqslant n}\}$ $|z_n = \inf_{n \to \infty} \{x_n ; k_{\geqslant n}\}$

Notons y = lim yn et z = lim zn. On veut montrer que y = x. Soir E>O. BNEIN, Ynz N, on a: $|y_n-y|<\frac{\varepsilon}{3}$ et $|x_n-x|<\frac{\varepsilon}{3}$. Comme $y_N = \sup_{k \to \infty} \{x_k, k \ge N\}$, $\exists k \ge N + g | x_k - y_N | < \frac{\varepsilon}{3}$ $|x-y| = |x-x_N+x_N-y_N+y_N-y|$ (| x - x x | + | x x - y x | + | y x - y | < \frac{\xi}{3} + \frac{\xi}{3} + \frac{\xi}{3} = \xi Donc x = y. On montre de même que x = z et donc y = z .

1. S Sous-suites

Prendre une sous-suite consiste à supprimer certains l'ermes d'une Volannée (en nambre fini an infini).

o: Suite (Un)

Def: Soit $(u_n)_{n\geq 0}$ une suite et $(n_k)_{k\geq 0}$ une suite "extractrice"

On appelle $(V_k)_{k\geq 0} = (u_n)_{k\geq 0}$ fune sous-suite de (u_n) on "suite extraite"

fin 25/09

: Sous - suite (VK)=(UnK)