Corollaire: Soit
$$f \in C^0(Ca,b]$$
, Si $G: [a,b] \rightarrow \mathbb{R}$ est une primitive de f Sur $[a,b]$, alors:
$$\int_a^b f(x) dx = G(b) - G(a) = \frac{G(x)}{a}$$
Notation / abréviation.

Preuve:
$$F:[a,b] \to \mathbb{R}$$

 $\times \mapsto \int_{a}^{x} f(r) dt$ est une primitive de f sur $[a,b]$ donc $\exists c \in \mathbb{R}^{r}.g$

$$F(x) = G(x) + c$$
, $Y \times E[a,b]$.
Done $G(b) - G(a) = F(b) - F(a) = \int_{a}^{b} f(t) dt$

fin 27/11

Exemple: limite de (un) définie par
$$u_n = \sum_{k=1}^{n} \frac{n}{n^2 + k^2}$$
, $\forall n \ge 1$

On a
$$u_n = \frac{1}{n} \sum_{k=1}^n \frac{1}{1 + \binom{k}{n}^2} = \sum_{k=1}^n \frac{1}{n} \cdot \int_{\binom{k}{n}} \frac{1}{n} \operatorname{avec} \int_{\binom{k}{n}} |R| \to |R|$$

On a: $\int_{\binom{k}{n}} e^{k} denaissanke$
 $\int_{\binom{k}{n}} \frac{1}{1 + \binom{k}{n}^2} = \sum_{k=1}^n \frac{1}{n} \cdot \int_{\binom{k}{n}} |R| \to |R|$
 $\int_{\binom{k}{n}} \frac{1}{1 + \binom{k}{n}^2} = \sum_{k=1}^n \frac{1}{n} \cdot \int_{\binom{k}{n}} |R| \to |R|$

On a: $\int_{\binom{k}{n}} e^{k} denaissanke$
 $\int_{\binom{k}{n}} \frac{1}{1 + \binom{k}{n}^2} = \int_{\binom{k}{n}} \frac{1}{n} \cdot \int_{\binom{k}{n}} |R| \to |R|$

$$y = \{(x)\}$$

Danc $U_n = \sum_{n} (1)$ ai $\sigma_n = \{0, \frac{1}{n}, \frac{2}{n}, \dots, 1\}$ la subdivision régulière de [0, 1]. Comme f et continue sur [0, 1], on a:

$$\lim_{n \to +\infty} u_n = \int_0^1 \frac{dx}{1+x^2} = \left[\operatorname{arckan}(x) \right]_0^1 = \operatorname{arckan}(1) - \operatorname{arckan}(0)$$

$$= \frac{T}{4}$$

Thm (variation des bonnes d'intégration) _ Sait $f \in C^0([a,b])$, a < b. Soit $I \subset \mathbb{R}$ un intervalle ouvert et g, $h: I \to [a,b]$ deux factions dérivables sur I. Alors la faction $K: I \to \mathbb{R}$ définie pour $C^{(x)}$

$$K(x) = \int_{h(x)}^{g(x)} J(t) dt$$

 $K'(x) = \int (g(x)) \cdot g'(x) - \int (h(x)) \cdot h'(x).$ est dérivable sur I et Yx EI, an a

Prenve: Sait
$$F: [a,b] \rightarrow \mathbb{R}$$
 une primitive de f . Alon
$$K(x) = F(g(x)) - F(h(x))$$
Ainsi $K'(x) = F'(g(x)) - g'(x) - F'(h(x)) \cdot h'(x)$

NB: pan trailer proprenent le cas ai g et h atteignent a an b, an peut prolonger f par $\int f(a) \sin x \ll a$ $\int f(b) \sin x \geqslant b$

7. 4 Propriétés d'ordre de l'intégrale

Prop. Soit
$$f: [a,b] \to \mathbb{R}_+$$
 integrable.

(i) $\int_a^b f(t) dt \ge 0$

(ii) $\int_a^b f(t) dt = 0$ et $f \in C^o([a,b])$ alon $f = 0$.

Preuve: (i) Conséquence de $\int_a^b f(t)dt \ge (\inf_a f) \cdot (b-a) \ge 0$ d' (ii) exercice.

Corollaire (préservation de l'ordre). Soient
$$f, g: [a, b] \rightarrow \mathbb{R}$$
 in Végrables telles que $f(x) \ll g(x)$, $\forall x \in [a, b]$. Alons:

$$\int_{a}^{b} J(x) dx \ll \int_{a}^{b} g(x) dx$$

Preuve: On pose $h: [a,b] \rightarrow \mathbb{R}_+$ définie par h(x) = g(x) - f(x). Alos: $0 < \int_a^b h(t) dt = \int_a^b g(t) dt - \int_a^b f(t) dt$ prop. précédente linéarité

Prenve: On pose
$$f' = \max\{f, 0\}$$
 et $f' = \max\{-f, 0\}$

On a :
$$|\int_{a}^{b} f(t) dt| = \int_{a}^{t} (f^{\dagger} - f^{-})(t) dt| = \left|\int_{a}^{b} f^{\dagger}(t) dt - \int_{a}^{b} f^{\dagger}(t) dt\right|$$

inegalize

triangulaire

$$\int_{a}^{b} f^{\dagger}(t) dt = \int_{a}^{b} f^{\dagger}(t) dt$$

linearize

Corollaire: Soit $f \in [a,b] \rightarrow \mathbb{R}$ intégrable (donc banée). Alon:

 $G: [a,b] \rightarrow \mathbb{R}$ est lipschitzienne. $x \mapsto \int_{a}^{x} f(t) dt$

Prenve: Soit K = Sup | f(x) |. Alors, Yx, y E[a,b] avec x < y, on a

$$|G(y)-G(x)| \ll |\int_{a}^{y} f(t) dt - \int_{a}^{x} f(t) dt|$$

$$= |\int_{x}^{y} f(t) dt| \ll \int_{x}^{y} |f(t)| dt \ll |K \cdot |y - x|$$

Aparé: Prop: L'application $\left(C^{\circ}([a,b])^{2} \longrightarrow \mathbb{R} \atop \left(f,g\right) \mapsto \int_{a}^{b} f(x) \cdot g(x) dx$ et un produit scalaire.

Preuve: . La bilinéarité : conséquence de la linéanité de l'intégrale.

· Symmétrie : ox par commutativité du produit.

• Positivité : or can $\int_{a}^{b} f(x)^{2} dx \ge 0$, $\forall f \in C^{2}([a,b])$.

• Défine : or can $\int_a^b f(x)^2 dx = 0$ alors f = 0

Danc $C^{\circ}([c_0, b])$ muni de ce purduit scalaire et de la name associée $f \mapsto \int_{0}^{b} \int_{0}^{2} (x) dx$ et pré-tilbertien. En revanche cet espace n'est pas complet, (danc ça n'est pas un espace de Hilbert).

Sa complétion est l'espace de Lebesgue L^{\circ}([a, b]), le plus important de espaces de fanctions.

7.5 Thénème de convergence

Thm; Soit (f_n) we suite de fanctions $C^{\circ}([a,b])$ qui converge uniformément vers f. Alors: $\lim_{n\to\infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx$

Preuve: f est continue comme limite unijonne de fautions continues donc Sof(x) dx bien définie.

Sair E>0.

Il existe $n_0 \in \mathbb{N}$, $\forall n \geqslant n_0$, sup $|\int_{\mathbb{R}^n} f_n(x) - f(x)| \ll \frac{\varepsilon}{b-a}$.

Ainsi $\forall n \geqslant n_0$, $\left| \int_a^b \int_a^b (x) dx - \int_a^b \int_a^b (x) dx \right| \ll \int_a^b \int_a^b \int_a^b (b-a) = \varepsilon$

Prop. ci-dessus

"On peut pamuler S et ling si la convergence est uniforme"

Shim for = him Sho

Contre-exemple quand la convergence n'est pas uniforme:

Pan
$$n \geqslant 2$$
 $\int_{\mathbb{R}} |[0,1] \rightarrow \mathbb{R}$ $|[0,1] \rightarrow \mathbb{R}$

Alors (fn) converge simplement veus f=0 mais pas uniformément.

On a ici: $\int_0^1 \int_0^1 f(x) dx = n \cdot \frac{1}{n} = 1$, $\forall n \ge 0$ mais $\int_0^1 \int_0^1 f(x) dx = 0$.

Thm (intégration / dérivation des séries entières). Soit $\sum_{n=0}^{+\infty} a_n x^n$ une série entière de nayon de convergence R > 0 et sait $F: J-R, R[\rightarrow IR sa fonction somme. Alons:

(i) la série entière <math>\sum_{n=1}^{+\infty} n a_n x^{n-1} = \sum_{n=0}^{+\infty} (n+1) a_{n+1} x^n$ a pour nayon de cyque R'=R.

(ii) Sa samme $f: J-R, R[\rightarrow R]$ satisfait F'(x) = f(x), $\forall x \in J-R, R[$.

Preuve:

(i)
$$R = \left(\limsup_{K \to +40} |a_{K}|^{1/K} \right)^{-1} = \left(\limsup_{K \to +40} |K|^{1/K} \right)^{-1} = R'$$

(ii) On note
$$f_N(x) = \sum_{n=0}^{N} (n+1) a_{n+1} \times^n pan \times \varepsilon J - R, R[.$$

On a $\int_{N} \in C^{\circ}(J-R,RE)$, $\forall N \in N$. Pour $u \in J-R,RE$ on sait que (\int_{N}) converge uniformément vers $\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}$

Comme de plus, jet continue sur J-R, R[, on en déduit:

Application: Calcula: S = \(\frac{1}{n=0} \frac{1}{n+1} \frac{1}{\sqrt{3}}n

On pare $f(x) = \sqrt{3!} \sum_{k=0}^{+\infty} \frac{x^{k+1}}{k+1}, R = 1, \text{ an } a f(\frac{1}{\sqrt{3!}}) = S$

Par dérivation de série entière: $\int_{-\infty}^{\infty} (x) = \sqrt{3} \sum_{k=0}^{\infty} x^k = \frac{\sqrt{3}!}{1-x} pan \times \epsilon \sqrt{3} - \frac{1}{1}$

Norc
$$f(x) = f(0) + \int_0^x \sqrt{3} \frac{dt}{1-t} = f(0) - \sqrt{3} \left[\log(1-t) \right]_0^x$$

=
$$-\sqrt{3} \log(1-x)$$

Ainsi $S = J(\frac{1}{13}) = -\sqrt{3} \log(1-\frac{1}{13})$.

7.6 Changement de variable

Thm: Sait $f \in C^{\circ}([a,b])$ et $f \in C^{\circ}([I])$ ai $I \subset \mathbb{R}$ intervalle ouver. Supportons qu'il existe $\alpha, \beta \in I$, $\alpha < \beta$ tels que $Y([\alpha,\beta]) \subset [a,b]$. Alors: $\begin{cases} \varphi(\beta) \\ \varphi(\alpha) \end{cases} f(x) dx = \int_{\alpha}^{\beta} f(Y(f)) \cdot Y'(f) df.$

Rmq: On n'impose por a ℓ d'être injective. Prenve: Pan $t \in [x, \beta]$, on définit $|G(t)| = \int_{\ell(\alpha)}^{\ell(t)} f(x) dx$ $g(t) = \int_{\ell(\alpha)}^{\ell(t)} f(t) dx$ On a $G'(t) = \int_{\ell(\alpha)}^{\ell(t)} f(t) f(t) dx$ $f(t) = \int_{\ell(\alpha)}^{\ell(t)} f(t) f(t) dx$ $f(t) = \int_{\ell(\alpha)}^{\ell(t)} f(x) dx$