<u>Lemme d'Abel (</u> sommation par pouties). Soient (un) et (vn) des suites réalles, alors: $(m, n \in IN)$, $\sum_{k=m}^{n} u_{k} (V_{k} - V_{k-1}) = (U_{n+1} V_{n} - U_{m} V_{m-1}) - \sum_{k=m}^{n} V_{k} (U_{k+1} - U_{k})$ Preune: \(\sum_{k=m} u_k \left(\forall k - V_{k-1} \right) + \sum_{k=m} V_k \left(u_{k+1} - u_k \right) = \sum_{k=m} \left(V_k u_{k+1} - V_{k-1} u_k \right) = V_n u_{n+1} - V_{m-1} u_m \end{ar} Preuse du Thr. d'Abel: On peut sans diffillés se namener au cas ai R=1 et \(\mathcal{Z} a_n=0,\) Nontrons que lim f(x) = 0. (le cas de la limite en -1 est analogne). à suivre ... (Examen blanc: mercredi 4 décembre 16:00 à 19:00, salle BCH 2201) En parant $S_n = \sum_{k=0}^{n} q_k$, $\forall n \in \mathbb{N}$. Par sommation par partie : $\sum_{k=0}^{n} a_{k} x^{k} = \sum_{k=0}^{n} (S_{k} - S_{k,1}) x^{k} = (x^{n+1} S_{n} - x^{s} S_{-1}) - \sum_{k=0}^{n} S_{k} (x^{k+1} - x^{k})$ $\int_{X} (X) = (I - X) \sum_{k=0}^{n} 2^{k} X_{k}$ Soit & >0. · Comme SK = 0, 3 No EN, Yn > No, ISn < E. · Par continuiré en $| , 35>0 , \forall x \in [1-8,1[, 1(1-x) \sum_{k=0}^{100} s_k x^k] < \frac{\epsilon}{2}$ polynème, done continu. · Ainsi $\forall x \in [\max(0, 1-S), 1[:]$ $|\{(x)| \leqslant \frac{\varepsilon}{2} + |(1-x)\sum_{k=N_{0}+1}^{k} S_{k} x^{k}|$

Ainsi $\forall x \in \lfloor \max(0, 1-\delta), 1 \rfloor$: $|f(x)| \leqslant \frac{\varepsilon}{2} + |(1-x) \sum_{k=N_0+1}^{\infty} s_k x^k|$ $\leqslant \frac{\varepsilon}{2} + (1-x) \frac{\varepsilon}{2} \sum_{k=0}^{\infty} x^k \leqslant \frac{\varepsilon}{2} + (1-x) \frac{\varepsilon}{2} \cdot \frac{1}{1-x} \leqslant \varepsilon$ Ceci montre $\lim_{x \to 1^-} f(x) = 0$.

Thm. (dérivation des séries entières). Soit $f(x) = \sum_{k=0}^{+\infty} a_k x^k$ avec un rayon de convergence R > 0. A lors $f \in C^{\infty}(J-R,R[)$ et $f'(x) = \sum_{k=1}^{+\infty} k a_k x^{k-1}$ et le rayon de convergence est enc ne R. Plus généralement: $\forall n \in \mathbb{N}^k$, $\int_{k=0}^{(n)} (x) = \sum_{k=0}^{+\infty} k(k-1) \cdots (k-n+1) a_k x^{k-n} \quad (meme nogan R)$

Preuve : chapitre "intégration".

Application: somme de la série hormonique alternée.

On a vu :
$$\begin{cases} \int \{x\} = \sum_{k=1}^{+\infty} \frac{x^k}{k} \text{ a poin } R = 1 \\ g(x) = \sum_{k=0}^{+\infty} x^k \text{ a poin } R = 1 \end{cases}$$
 (exemples A)et B) ci-dessus)

Pan dérivation des séries entières
$$f'(x) = \sum_{k=1}^{+\infty} x^{k-1} = g(x)$$
 pan $x \in]-1, [$
Nois $g(x) = \frac{1}{1-x}$ et $f(0) = 0$ donc $f(x) = -\log(1-x)$ pour $x \in]-1, [$

On sait que la série converge pour x=-1 (série harmonique alternée). On en déduit, par le Thom d'Abel que:

$$\sum_{k=1}^{\text{tob}} \frac{(-1)^k}{k} = \lim_{x \to (-1)^k} -\log(1-x) = -\log(2)$$

5.3 Série de Taylor

Sait I un intervalle onvert et $f \in C^{\infty}(I)$. On rappelle Taylor-Lagrange en a EI: $\forall x \in \mathbb{I} \setminus \{a\}, \quad \int \{x\} = \sum_{k=0}^{n} \int_{\mathbb{R}^{2}}^{(k)} (a) \left(x-a\right)^{k} + \left(\frac{x-a}{(n+1)!} \int_{\mathbb{R}^{2}}^{(n+1)!} (u_{x}) \text{ avec } u_{x} \in \mathbb{J} a, x \in \mathbb{R}^{2}$ Naturellement en est amenés à étudier le lien entre f et l'objet suivant:

(an série de Maclaurin si a = 0)

Def (Série de Taylor). On appelle série de Taylor de f en a la série entière:

 $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} \left(x - a \right)^{k}$

Def. Sait I un intervalle ouvert et g ∈ C°(I). Si pour a ∈ I, il existe S>0 t.g f coincide avec sa série de Taylor en a sur Ja-S, a+8[alors on dit que f est <u>analytique</u> au voisinage de a. Si f est malytique au voisinage de tont point de I, a dir que f est <u>analytique</u> sur I.

Prop: Tonte série entrière de rayon de cugee R>0 est analytique son J-R, R[. (admis - cf. analyse complexe)
est strickent inclus dans

On a C^w(I) & C[∞](I) ensemble des jandions analytiques.

Exemples:

A) $f(x) = \sin(x)$, a = 0. On a f'(x) = con(x), f''(x) = -sin(x), f''(x) = -con(x), ... La série de Taylor de sin en a = 0 est:

 $0 + x + 0 - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 - \frac{1}{7!} x^7 + \dots = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$

• Intervalle de convergence ?

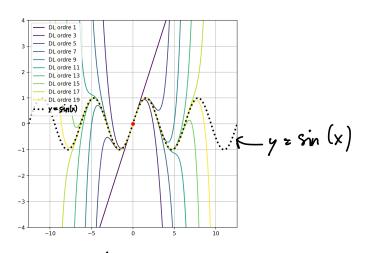
D'Alembert: $\left|\frac{x^{2k+1}}{(2k+1)!} \cdot \frac{(2k-1)!}{x^{2k-1}}\right| = \frac{1 \times 1^2}{(2k+1) \cdot 2k} \xrightarrow{k \to \infty} 0$, $\forall x \neq 0$.

Danc R=+ = et la série converge sur P.

· <u>lien entre</u> f et sa série de Taylor?

 $Pam x \neq 0, \quad R_{K}(x) = \int_{0}^{\infty} (x) - \sum_{n=0}^{K} \frac{(-1)^{n}}{(2n+1)!} x^{2n+1} = \frac{x^{2k+2}}{(2k+2)!} \int_{0}^{(2k+1)} (u_{x,k}), \quad u_{x,k} \in]0, x[$ $|R_{\kappa}(x)| \leqslant \frac{|x|^{2\kappa+2}}{(2\kappa+2)!} \xrightarrow{\kappa \to \infty} 0$ Ainsi $\sin(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} \times ^{2n+1}$, $\forall_x \in \mathbb{R}$.

 $\sin \in C^{w}(\mathbb{R}).$



B) Sait $f: \mathbb{R} \to \mathbb{R}$ dérivable ty. $\begin{cases} \int_{\mathbb{R}^n} (x) = f(x), \forall x \in \mathbb{R} \\ f(x) = f(x), \forall x \in \mathbb{R} \end{cases}$. Nowhow you $f = \exp f(x)$.

Par récurence $\int \mathcal{E} C^{\infty}(\mathbb{R})$ et $\int_{0}^{(n)} f(x) dx = \int_{0}^{(n)} f(x) dx = \int_{0$

Série de Tay lor en a=0: $\sum_{k=0}^{+\infty} \frac{x^k}{k!}$. Rayon de crogec: R=+co (v_k plus hant).

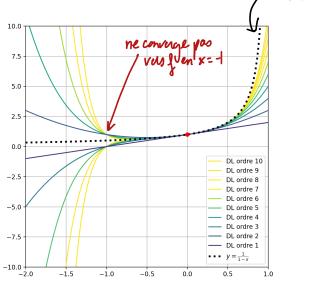
 $\forall x \neq 0, \ R_{\eta}(x) = \{(x) - \sum_{k=0}^{\eta} \frac{x^{k}}{k!} = \frac{x^{\eta+1}}{(\eta+1)!} \ \{(u_{\eta,x}), \quad \text{avec} \quad u_{\eta,x} \in \ \} \ 0, \ x \in \ \}$

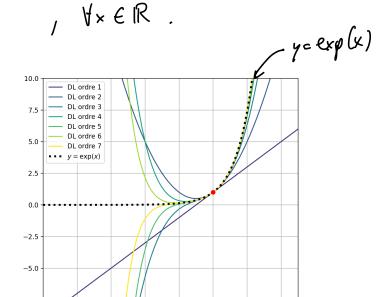
 $|R_n(x)| \ll \frac{|x|^{n+1}}{(n+1)!} \max_{x \in \mathbb{R}} |f(x)|$; $|f| \ll |x|$ $\Rightarrow 0$ (d'Alembert pour suites)

-10.0 | -10

Ainsi $\int_{k=0}^{\infty} \frac{x^{k}}{k!} = \exp(x)$ er $\exp \in C^{w}(\mathbb{R})$.

Autre exemple (qui ne coge pas sur.R): 1





C) Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \begin{cases} e^{-1/x^2} & \text{si } x \in \mathbb{R}^* \\ 0 & \text{si } x = 0 \end{cases}$

Prop: $g \in C^{\infty}(\mathbb{R})$ et $g^{(n)}(0) = 0$, $\forall n \in \mathbb{N}$. (exercice).

Ainsi la série de Taylor de f en 0 est $\sum_{k=0}^{+\infty} 0.x^{k} = 0$ $(R = +\infty)$ Danc f ne coincide avec sa série de Taylor que en 0 $(f \notin C^{\omega}(R))$

Tableau récapitulatif: quelques fanctions développables en séries de Taylor (A comovitre)

{(x)	Série de Taylor en O (S(x))	$g(x) = S(x) \text{ pour } x \in$
<u> </u>	1 + x + x ² + + x ⁿ +	7-1,1[
log(1+x)	$\times - \frac{\times^{2}}{2} + \frac{\times^{3}}{3} + (-1)^{n+1} \frac{\times^{n}}{n} +$]-1,[]
exp(x)	$[+\frac{x}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}++\frac{x^n}{n!}+$	1R
sin (x)	$\times -\frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots$	R
c 03 (x)	$ - \frac{x^{1}}{2!} + \frac{x^{4}}{4!} + (-1)^{n} \frac{x^{2n}}{(2n)!} +$	R
$\sinh(x) = \frac{e^x - \bar{e}^x}{2}$	$x + \frac{x^3}{3!} + + \frac{x^{2n+1}}{(2n+1)!} +$	R
$ cosh(x) = \frac{e^x + e^y}{2} $	$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2\eta}}{(2n)!} + \dots$	R.

Addendum (unicité): Sat $\sum_{k=0}^{\infty} a_k x^k$ et $\sum_{k=0}^{\infty} b_k x^k$ deux séries entières de rayon de cavergence R_a , $R_b > 0$ et de fonctions somme f_a , f_b respectivement. Si $\exists S \in J0$, min (R_a, R_b) [tel que $\forall x \in J-S$, S[on a $f_a(x) = f_b(x)$, alors $a_k = b_k$, $\forall k \in IN$.

Preuve: Par dérivation des séries entières, on a $\forall k \in \mathbb{N}$, $k! a_k = \int_a^{(k)}(0) = \int_b^{(k)}(0) = K! b_k$