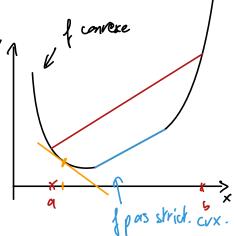
4.13 Fondians convexes

Soit I CR un intervalle et f: I -> IR une fonction.

Def: . Jest dike <u>convexe</u> ssi Ya, b EI, Yd E[0,1],

$$f(\lambda a + (1-\lambda)b) \ll \lambda f(a) + (1-\lambda)f(b)$$

"le grape de j est en demans de ses condes"



- o Si l'inégalité est stricte du moment que a *b et l & {0,1} alors on dit que f est strictement convexe.
- · f est concare ssi f est convexe.

On a les propriétés suivantes (série 9.2):

- Si j: I > IR convexe alors j'est continue sur Î lintervalle I privé de ses bonner) et admet des dérivées à gauche et à droite en tout point de Î.
- · Si f: I > R dérivable sur I, alors:

"le graphe d'une faction convexe est au demus de ses tangentes".

Si f: I→R deux fois dérivable sur I alors:
 f convexe (=) f">0.

Chapitre 5: séries entières

5.1 Généralités

Def: Sait (an) n= o une suite dans IR et xo ER. On appelle "série entière" $(expression) = \sum_{n=0}^{+\infty} a_n (x-x_0)^n = a_0 + a_1 \cdot (x-x_0) + ... + a_n \cdot (x-x_0)^n + ...$

On appelle n-ième somme partieble de la série entière et la quantité $S_n(x) = \sum_{\kappa=0}^n a_{\kappa} \cdot (x - x_0)^{\kappa}$

Bing: a (Sn) est une suite de polynômes de degré croissant.

- . La série entière s'interprète comme un polynôme de degré infini, mais ses propriétés penvent être his différentes des polynômes
- . Sans pente de généralité, fixan x = 0 par la suite.

Def: Si I C R est un intervalle, on dit que:

- · la série entière converge (simplement/produellement) son I si la suite (Sn) converge.

 · la série entière converge uniformément si la suite (Sn) converge uniformément.

Thm. S'il existe $\hat{x} \neq 0$ t. y la série (numérique) $\sum_{n=0}^{+\infty} a_n \hat{x}^k$ converge alors la série $\sum_{n=0}^{+\infty} a_n x^k$ converge absolument pour tout $x \in I=J-\hat{x}, \hat{x}$. Donc la série entière converge simplement sur I.

Prenve: Si $\sum_{k=0}^{+\infty} a_k \hat{x}^k$ converge alors on a $|a_k \cdot \hat{x}^k| \xrightarrow{\kappa \to \infty} 0$ donc $\exists C > 0 \text{ t.g.} |a_k \cdot \hat{x}^k| \ll C$, $\forall k \in \mathbb{N}$.

Si $x \in \mathbb{R}$ t. $q |x| < |\hat{x}|$, le notio $p = \frac{x}{\hat{x}}$ satisfait |p| < 1. Ainsi, $|a_{k} \cdot x^{k}| = |a_{k}| \cdot |x|^{k} = |a_{k}| \cdot |\hat{x}|^{k} \cdot |p|^{k} \ll C \cdot |p|^{k}$ Comme $\sum_{k=0}^{+\infty} |p|^{k} < +\infty$ (converge) cela monthe, par comparaison que $\sum_{k=0}^{+\infty} a_{k} x^{k}$ converge absolument.

Def: On appelle "Nayon de convergence" le nombre: $R = \sup \left\{ |X| ; \sum_{n=0}^{+\infty} a_n x^n \text{ converge} \right\} \in [0, +\infty]$

D'après le thm. précédent: an a que $\sum_{n=0}^{\infty} a_n \times^n$. convuge absolument si |x| < |R|.

of our or peut vien dire a priori pour x = R on x = -R.

Exemples:

A) On pose $\forall n \in \mathbb{N}$, $a_n = 1$. La série entière est $\sum_{n=0}^{+\infty} x^n$. Rappel: $\sum_{n=0}^{\infty} x^n = \frac{1-x^{N+1}}{1-x}$, par $x \neq 1$.

On obtient R = 1 et la samme vant $f(x) = \frac{1}{1-x} \forall x \in \mathbb{Z}-1, 1\mathbb{L}$. et la série diverge pour $|x| \ge 1$.

B) On pose $a_0 = 0$ et $a_K = \frac{1}{K}$, $\forall K \in \mathbb{N}^*$, la série entrière et $\frac{2n}{K} = \frac{1}{K} \times \frac{1}{K} = \frac{1}{K} \times \frac{1}{2} \times \frac{1}{$

Donc par le critère de d'Alembert, le rayon de convergence ent R=1. De plus: Si x = 1 : la série diverge (série harmonique) e Si x = -1 : la série converge (série harmonique allemée).

C) On pose $a_n = \frac{1}{k!}$, $\forall k \in \mathbb{N}$ (0!=1). La série est $\sum_{n=0}^{+\infty} \frac{x^n}{n!}$.

Comme $\forall n \in \mathbb{N}$, $x \neq 0$, $\left|\frac{a_{n+1} \times^{n+1}}{a_n \times^n}\right| = |x| \cdot \frac{n!}{(n+1)!} = \frac{|x|}{n+1} \xrightarrow[n \to +\infty]{} 0$ Par le crivère de D'Alembert, le rayon de convergence est $R = +\infty$.

C'est ainsi que l'an définit l'exparentielle:

 $\forall x \in \mathbb{R}$, $\exp(x) := \sum_{n=0}^{\infty} \frac{x^n}{n!}$ (etude au pro-chain chapitre).

D) On pose $a_n = n!$, $\forall n \in \mathbb{N}$, la série entière $\sum_{n=0}^{\infty} (n!) \times^n$ a pour rayon de convergence R = 0, d'après le critère de D'Alembert con: $\left|\frac{a_{n+1} \times^{n+1}}{a_n \times^n}\right| = |x| \cdot (n+1) \rightarrow +\infty$, $\forall x \neq 0$.

Prop: Si $\sum a_n x^n$ a pour rayon de convergence R > 0 alors: $R = \left(\lim \sup_{n \to \infty} |a_n|^{\sqrt{n}} \right)^{-1}.$

Preuve: On a lim sup |an·x"| = |x|-lim sup |an| puis critère de Canchy
version lim sup

5.2 Compartement des séries entières en trant que fanctions.

Thm (convergence uniforme). Soit $\sum_{n=0}^{\infty} a_n x^n$ une série entière de rayon de convergence R > 0. Alors $\forall r \in]0, R[$, la série entière converge uniformément sur [-r, r].

-R Page uniforme R

Prenve: Soit $\Lambda \in]0, R[. Point x \in [-\Lambda, \Lambda] \text{ on } a:$ $|S(x)-S_n(x)|=|\sum_{k=0}^{+\infty}a_kx^k-\sum_{k=0}^{n}a_kx^k|$ $= \left| \sum_{k=n+1}^{\infty} a_k \times^{\kappa} \right|$ Par le Thin ci-dessus, Danl. 1 converge done Lant. 1 aul. 1 no 0 Ainsi sup $|S(x) - S_n(x)| \xrightarrow{n \to \infty} 0$ ce qui montre la convergence uniforme de (Sn) vers S sur [-1,1]. Rmg1: 1 La convergence n'est en général pas uniforme sur J-R, R[! Contre-exemple: \(\sum_{k=0}^{+00} \times^k \) ne converge pas uniformément sur J-1, 1[. En effet: → chaque somme partielle est bornée]-1, [[(polynôme) → mais la limite $x \mapsto \frac{1}{1-x}$ n'est par bornée (au voisinage de 1). Rmg 2: En pouticulier la fonction somme $f(x) = \sum_{n=0}^{\infty} a_n x^n$ et continue sur]-R, $R[(can continue sur [-n,n], \forall n \in]0$, R[,comme limite uniforme de fet continue).-> Qu'en et-il de la continuité aux bords? Then d'Abel: Soit $\sum_{n=0}^{\infty} a_n x^n$ une série entière, R>O son rayon de convergence.

On pose $f(x) = \sum_{n=0}^{\infty} a_n x^n$ pose |x| < R.

• Si $\sum_{n=0}^{\infty} a_n R^n$ converge alors $\lim_{x\to R^-} J(x) = \sum_{n=0}^{\infty} a_n R^n$ (continuité à gaude en R)
• Si $\sum_{n=0}^{\infty} a_n (R)^n$ converge alors $\lim_{x\to -R^+} J(x) = \sum_{n=0}^{\infty} a_n (-R)^n$ (continuité à droite en-R)

Lemme d'Abel (sommation par parties). Scient (un) et (vn) des suites réclles, alors: $(m, n \in IN)$, $\sum_{k=m}^{n} u_k (v_k - v_{k-1}) = (u_{n+1} v_n - u_m v_{m-1}) - \sum_{k=m}^{n} v_k (u_{k+1} - u_k)$ $\frac{1}{k+m} u_k (v_k - v_{k-1}) + \sum_{k=m}^{n} v_k (u_{k+1} - u_k) = \sum_{k=m}^{n} (v_k u_{k+1} - v_{k-1} u_k) = v_n u_{n+1} - v_{m-1} u_m$

Preuve du Thr. d'Abel: On peut sans diffillés se namener au cas ai R=1 et $\Sigma a_n=0$.

Nontrons que lim f(x)=0. (le cas de la limite en -1 est analogne).

A' suivre ...