Corrigé 6.2 – jeudi 17 octobre 2024

Exercice 1.

Cherchons les valeurs de $\alpha \in \mathbb{R}$ pour lesquelles on a l'existence de la limite suivante

$$\lim_{x \to \alpha} \frac{x^4 + \alpha x^3 - 8\alpha x}{\sin(\alpha^4 - x^4)}.$$

1. Puisque $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$, sous réserve d'existence de ces limites, on a (limite d'un produit):

$$\lim_{x \to \alpha} \frac{x^4 + \alpha x^3 - 8\alpha x}{\sin(\alpha^4 - x^4)} = \lim_{x \to \alpha} \frac{x^4 + \alpha x^3 - 8\alpha x}{\alpha^4 - x^4}.$$

De plus, si l'une de ces limites n'existe pas, alors l'autre non plus. Mais puisqu'à la limite le dénominateur tend vers 0, cette limite ne peut exister que si α est racine du numérateur, i.e.

$$\alpha^4 + \alpha \alpha^3 - 8\alpha \alpha = 0 \iff 2\alpha^2(\alpha^2 - 4) = 0 \iff (\alpha = 0 \text{ ou } \alpha = 2 \text{ ou } \alpha = -2).$$

2. (a) Si $\alpha = 0$, la limite se ramène (par composition de limites) à

$$\lim_{x \to 0} \frac{x^4}{\sin(-x^4)} = -1.$$

(b) Si $\alpha = 2$, la limite se ramène à

$$\lim_{x \to 2} \frac{x(x-2)(x^2+4x+8)}{(4+x^2)(2+x)(2-x)} = -\lim_{x \to 2} \frac{x(x^2+4x+8)}{(4+x^2)(2+x)} = -\frac{40}{32} = -\frac{5}{4}.$$

Pour obtenir cette expression, on a factorisé le numérateur $x^4 + 2x^3 - 16x$ en trouvant ses racines triviales 0 et 2 puis en effectuant une division de polynômes, et on a factorisé le dénominateur $2^4 - x^4$ à l'aide d'identités remarquables.

(c) Si $\alpha = -2$, la limite se ramène à

$$\lim_{x \to -2} \frac{x(x+2)(x^2 - 4x + 8)}{(4+x^2)(-2-x)(x-2)} = -\lim_{x \to -2} \frac{x(x^2 - 4x + 8)}{(4+x^2)(x-2)} = -\frac{40}{32} = -\frac{5}{4}.$$

Exercice 2.

(i) Comme le dénominateur ne s'annule pas en x=2, le calcul de cette limite est direct :

$$\lim_{x \to 2} \frac{x^3 + 2x - 1}{3x^2 - 2} = \frac{\lim_{x \to 2} (x^3 + 2x - 1)}{\lim_{x \to 2} (3x^2 - 2)} = \frac{(\lim_{x \to 2} x)^3 + 2\lim_{x \to 2} x - 1}{3(\lim_{x \to 2} x)^2 - 2} = \frac{2^3 + 2 \cdot 2 - 1}{3 \cdot 2^2 - 2} = \frac{11}{10}$$

grâce aux règles de calcul pour les limites de fonctions.

(ii) En observant que le dénominateur divise le numérateur, on a

$$\lim_{x \to 1} \frac{x^3 + x^2 - 2}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x^2 + 2x + 2)}{x - 1} = \lim_{x \to 1} (x^2 + 2x + 2) = 5.$$

(iii) Par définition de la partie entière, on sait que

$$\left| \frac{1}{x} - 1 < \left| \frac{1}{x} \right| \le \frac{1}{x}.$$

On multiplie ces inégalités par x > 0, on trouve

$$1 - x \le x \left| \frac{1}{x} \right| \le 1,$$

ce qui prouve, par le théorème d'encadrement, que $\lim_{x\to 0^+} x \left\lfloor \frac{1}{x} \right\rfloor = 1$.

(iv) On utilise la quantité conjuguée :

$$\sqrt{x^2 + 2x} - x = \frac{x^2 + 2x - x^2}{\sqrt{x^2 + 2x} + x} = \frac{2x}{x\sqrt{1 + \frac{2}{x} + x}} = \frac{2}{\sqrt{1 + \frac{2}{x} + 1}}.$$

La limite recherchée est égale à 2/2 = 1.

(v) On utilise la quantité conjuguée, qui donne

$$\sqrt{x + \sqrt{x}} - \sqrt{x} = \frac{\sqrt{x}}{\sqrt{x + \sqrt{x}} + \sqrt{x}}.$$

En mettant en facteur \sqrt{x} au numérateur et au dénominateur, on obtient

$$\sqrt{x+\sqrt{x}} - \sqrt{x} = \frac{1}{\sqrt{1+\sqrt{\frac{1}{x}}}+1}.$$

La forme n'est plus indéterminée, et la limite recherchée est 1/2.

(vi) Comme $1 - x^3 = (1 - x)(1 + x + x^2)$, on peut simplifier la fraction en mettant au même dénominateur pour calculer la limite :

$$\lim_{x \to 1} \left(\frac{1}{1-x} - \frac{3}{1-x^3} \right) = \lim_{x \to 1} \frac{1+x+x^2-3}{1-x^3} = \lim_{x \to 1} \frac{x^2+x-2}{(1-x)(1+x+x^2)}$$
$$= \lim_{x \to 1} \frac{(x-1)(x+2)}{(1-x)(1+x+x^2)} = -\lim_{x \to 1} \frac{x+2}{x^2+x+1} = -\frac{3}{3} = -1.$$

Exercice 3.

Parmi les propriétés suivantes, lesquelles sont équivalentes à "f est continue en x", qui est définie dans le cours par:

(0)
$$\forall \epsilon > 0 \,\exists \delta > 0 \,\forall u : |x - u| < \delta \implies |f(x) - f(u)| < \epsilon$$
.

(i) $\forall \epsilon > 0 \,\exists \delta > 0 \,\forall y : |x - y| < \epsilon \implies |f(x) - f(y)| < \delta$

Considérons la fonction $f: \mathbb{R} \to \mathbb{R}$ donnée par

$$f(x) = \begin{cases} 1, & \sin x \ge 0, \\ -1, & \sin x < 0. \end{cases}$$

Alors, au point x=0, et pour tout $\epsilon>0$, il suffit de prendre $\delta=3$ pour vérifier la propriété. Pourtant, f n'est pas continue en x. Cette propriété n'est donc pas équivalente à "f est continue en x".

2

(ii) $\forall \delta > 0 \,\exists \epsilon > 0 \,\forall y : |x - y| < \epsilon \implies |f(x) - f(y)| < \delta$

Cette propriété est équivalente à la définition originelle (0), il suffit en effet d'échanger les lettres utilisées pour ϵ et δ .

Nous montrons à présent que

(iii)
$$\forall \epsilon > 0 \,\exists \delta > 0 \,\forall y : |x - y| \le \delta \implies |f(x) - f(y)| < \epsilon$$
, et

(iv)
$$\forall \epsilon > 0 \,\exists \delta > 0 \,\forall y : |x - y| < \delta \implies |f(x) - f(y)| < \epsilon$$

sont aussi équivalentes à (0) en montrant (iv) \implies (iii). En effet, les implications (0) \implies (iv) et (iii) \implies (0) sont élémentaires et donc ainsi les trois seront équivalentes.

Pour (iv) \implies (iii), soit donc $\epsilon > 0$. On applique (iv) à $\epsilon/2$, ce qui nous fournit l'existence d'un nombre $\eta > 0$ tel que

$$\forall y : |x - y| < \eta \implies |f(x) - f(y)| \le \epsilon/2.$$

On pose ensuite $\delta = \eta/2$ et on vérifie bien que pour tout y on a:

$$|x-y| \le \delta \implies |x-y| < \eta \implies |f(x)-f(y)| \le \epsilon/2 \implies |f(x)-f(y)| < \epsilon.$$

(v) $\forall \epsilon > 0 \,\exists \delta > 0 \,\forall y : |x - y| < \epsilon \iff |f(x) - f(y)| < \delta$

Une fonction constante est continue mais ne satisfait pas cette condition.

(vi) $\forall \epsilon > 0 \,\exists \delta > 0 \,\forall y : |x - y| < \delta \iff |f(x) - f(y)| < \epsilon$

De nouveau, une fonction constante ne satisfait pas cette condition.

Exercice 4.

Il existe $\delta > 0$ t.q. f est définie et croissante sur $[x_0 - \delta, x_0[\cup]x_0, x_0 + \delta]$. Et donc, pour x dans $[x_0 - \delta, x_0[\cup]x_0, x_0 + \delta]$, on a $f(x_0 - \delta) \leq f(x) \leq f(x_0 + \delta)$ ce qui signifie que f est bornée sur $[x_0 - \delta, x_0]$ et sur $[x_0, x_0 + \delta]$.

(a) Puisque $f|_{]x_0-\delta,x_0[}$ est bornée, il existe $\ell \in \mathbb{R}$ tel que $\ell = \sup_{x \in]x_0-\delta,x_0[} f(x)$. Pour tout $\epsilon > 0$ donné, il existe $\alpha \in]x_0-\delta,x_0[$ tel que

$$\ell \ge f(\alpha) \ge \ell - \epsilon$$
.

Et puisque $f|_{]x_0-\delta,x_0[}$ est croissante, on a

$$\ell \ge f(x) \ge f(\alpha) \ge \ell - \epsilon, \quad \forall x \in [\alpha, x_0].$$

Par suite $|f(x) - \ell| \le \epsilon$ pour tout $x \in [\alpha, x_0[$. On obtient donc, puisque ϵ est quelconque,

$$\lim_{x \to x_0^-} f(x) = \ell.$$

(b) Puisque $f|_{[x_0,x_0+\delta]}$ est bornée, il existe $m \in \mathbb{R}$ tel que $m = \inf_{x \in [x_0,x_0+\delta[} f(x)$. Pour tout $\epsilon > 0$ donné, il existe $\beta \in [x_0,x_0+\delta[$ tel que

$$m \le f(\beta) \le m + \epsilon$$
.

Et puisque $f|_{]x_0,x_0+\delta[}$ est croissante, on a

$$m < f(x) < f(\beta) < m + \epsilon, \quad \forall x \in]x_0, \beta[.$$

ce qui prouve que $|f(x) - m| \le \epsilon$, $\forall x \in [x_0, \beta]$ et par suite

$$\lim_{x \to x_0^+} f(x) = m.$$

(c) Comme f est croissante, on a $\forall x \in]x_0 - \delta, x_0[$ et $\forall y \in]x_0, x_0 + \delta[$ que $f(x) \leq f(y)$. On en déduit que $\ell \leq m$ et donc $\lim_{x \to x_0^-} f(x) \leq \lim_{x \to x_0^+} f(x)$.

Exercice 5.

Soit $a \in \mathbb{R}$ et étudions la continuité de f en a. On sépare l'étude en trois cas :

- 1. Si a est rationnel, et $a \neq 0$, on a $f(a) \neq 0$. Soit (x_n) une suite telle que $(x_n) \to a$ et chaque x_n est irrationnel. Alors $f(x_n) = 0$, donc $x_n \to a$ et $f(x_n) \to 0 \neq f(a)$. La fonction f n'est pas continue en a.
- 2. Si a est irrationnel, l'idée est que, pour un rationnel p/q proche de a, q doit nécessairement être grand, et donc f(p/q) sera petit. Formalisons un peu les choses. Fixons $\epsilon > 0$ et $N \ge 1$ tel que $1/N \le \epsilon$. Dans l'intervalle [a-1,a+1], il y a un nombre fini de rationnels de la forme p/q avec $1 \le q \le N$. En effet, on a forcément

$$|p| \le (|a|+1) \times q \le (|a|+1) \times N$$

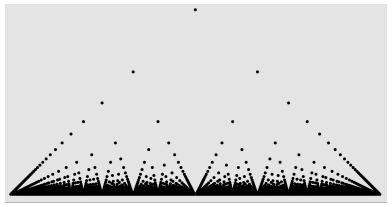
et il y a un nombre fini de choix de p et q possibles. De plus, aucun de ces p/q n'est égal à a, puisque a est irrationnel. On peut donc trouver $\delta > 0$ tel que, pour tout $x \in [a - \delta, a + \delta]$ qui s'écrit p/q avec $q \ge 1$, on a $q \ge N$. On en déduit que, pour tout $x \in [a - \delta, a + \delta]$

- ou bien x est irrationnel ou nul et |f(x)| = 0;
- ou bien x est rationnel et par le choix de δ , on a $|f(x)| \leq 1/N < \epsilon$.

Ainsi, $|f(x) - f(a)| < \epsilon$ pour tout x dans $[a - \delta, a + \delta]$: on a prouvé la continuité de f en a.

3. Si a = 0, alors une petite variation de la preuve précédente (il faut enlever les rationnels p/q avec p = 0) prouve que f est aussi continue en 0.

Notons que pour le point 2., un argument utilisant la conclusion de l'exercice 6 de la série 4.2 est aussi possible. Soit a irrationel et (a_n) une suite qui converge vers a. Alors on peut décomposer (a_n) en la sous-suite (a_{m_k}) de ses termes irrationels et (a_{n_k}) de ses termes rationnels. On a triviallement que $f(a_{m_k}) = 0 \ \forall k \in \mathbb{N}$ et, par l'exercice 6 de la série 4.2, on a que le dénominateur de la représentation irréductible de a_{n_k} tend vers $+\infty$ et donc $\lim_{k\to\infty} f(a_{n_k}) = 0$. En combinant ces deux résultats, on déduit que $\lim_{n\to\infty} f(a_n) = 0 = f(a)$ et donc f est continue en a.



Allure de f sur l'intervalle [0,1] (au milieu: f(1/2) = 1/2). Source: https://en.wikipedia.org/wiki/Thomae%27s_function