Corrigé 5.2 – jeudi 10 octobre 2024

Exercice 1.

Étudions la convergence de

$$\sum_{n=0}^{\infty} \left(\frac{1}{(2n+1)!} + \frac{(-1)^n}{n^2 + n + 1} \right).$$

1. Montrons d'abord que $\sum_{n=0}^{\infty}\frac{1}{(2n+1)!}$ converge. On a

$$x_n = \frac{1}{(2n+1)!}$$
, et $\frac{x_{n+1}}{x_n} = \frac{(2n+1)!}{(2n+3)!} = \frac{1}{(2n+3)(2n+2)} \to_{n\to\infty} 0$.

Le critère de d'Alembert nous permet de conclure que cette série converge.

2. Montrons maintenant que $\sum_{n=0}^{\infty} \frac{(-1)^n}{n^2+n+1}$ converge. En posant $x_n = \frac{(-1)^n}{n^2+n+1}$, $n \in \mathbb{N}$, on vérifie aisément que

$$\lim_{n \to \infty} x_n = 0, \quad x_n \cdot x_{n+1} < 0 \quad \text{et} \quad |x_{n+1}| \le |x_n|.$$

Le critère des séries alternées nous permet de conclure que cette série converge. (NB: contrairement à ce que j'ai dit en cours, le critère des séries alternées reste encore valide si l'on suppose $x_n \cdot x_{n+1} \leq 0$, $\forall n$ (inégalité non stricte); car si il existe $n \in \mathbb{N}$ tel que $x_n = 0$ alors par la décroissance de $(|x_n|)_n$, on a $x_k = 0$, $\forall k \geq n$ et donc la série converge trivialement).

3. Puisque les séries étudiées dans les points (1) et (2) convergent, leur somme converge également.

Exercice 2.

Soient $(a_n)_{n\geq 0}$ et $(b_n)_{n\geq 0}$ deux suites de nombres réels strictement positifs pour lesquelles il existe $n_0 \in \mathbb{N}$ tel que:

$$\frac{a_{n+1}}{a_n} \le \frac{b_{n+1}}{b_n}, \quad \text{pour tout entier } n \ge n_0.$$

1) Montrons que

$$\sum_{n=0}^{\infty} b_n < +\infty \implies \sum_{n=0}^{\infty} a_n < +\infty.$$

Par hypothèse, on a

$$\frac{a_{n+1}}{b_{n+1}} \le \frac{a_n}{b_n} \le \frac{a_{n-1}}{b_{n-1}} \le \dots \le \frac{a_{n_0}}{b_{n_0}} = \beta, \quad \forall n \ge n_0.$$

Ainsi $a_n \leq \beta b_n$, $\forall n \geq n_0$. Si de plus on pose $M = \max_{k=0,\dots,n_0-1} |a_k|$, on a pour $p \geq n_0$,

$$S_p = \sum_{k=0}^p a_k = \sum_{k=0}^{n_0 - 1} a_k + \sum_{k=n_0}^p a_k \le Mn_0 + \beta \sum_{k=n_0}^p b_k \le Mn_0 + \beta \sum_{k=0}^p b_k.$$

Par hypothèse, la suite $\left(\sum_{k=0}^{p} b_{k}\right)_{p=0}^{\infty}$, qui est croissante, converge ; posons $\ell > 0$ sa limite. On a alors

$$S_p \leq Mn_0 + \beta \ell, \quad \forall p \geq n_0.$$

La suite $(S_p)_{p=0}^{\infty}$ étant de plus croissante, elle converge et donc la série $\sum_{n=0}^{\infty} a_n$ converge.

2) En ce qui concerne l'implication

$$\sum_{n=0}^{\infty} a_n = +\infty \implies \sum_{n=0}^{\infty} b_n = +\infty,$$

c'est en fait juste la contraposée de la première implication, donc on l'a déjà démontrée. C'est aussi une conséquence évidente (par comparaison) de la relation suivante obtenue au point 1 :

$$\sum_{k=0}^{p} a_k \le M n_0 + \beta \sum_{k=0}^{p} b_k, \quad \forall p \ge n_0.$$

Exercice 3.

1. D'après le critère de d'Alembert, cette série converge si $0 < \alpha < e$ et diverge si $\alpha > e$. Pour $\alpha = e$, elle diverge, par étude directe. En effet, en posant $a_n = \frac{e^n n!}{n^n}$, on obtient pour tout entier n > 1:

$$a_{n+1} = \frac{e}{\left(1 + \frac{1}{n}\right)^n} a_n > a_n > \dots > a_1 = e;$$

ce qui entraı̂ne que $\lim_{n\to+\infty} a_n \neq 0$.

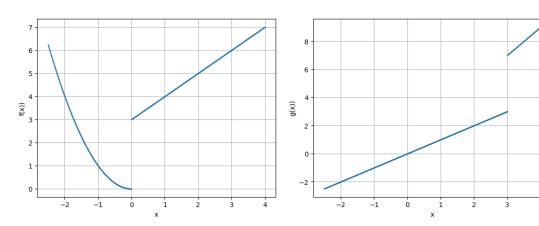
Exercice 4.

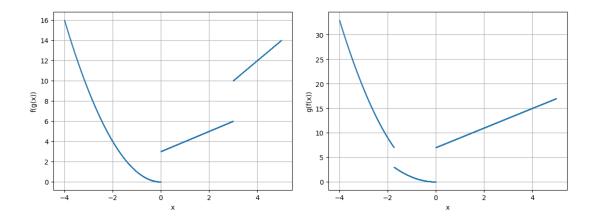
- 1. Soient $a, b \in \mathbb{R}$ tels que $a \leq b$. Puisque g est décroissante, on a $g(a) \geq g(b)$. Comme f est décroissante, on a pour tous $x \geq y$ que $f(x) \leq f(y)$. Donc avec x = g(a) et y = g(b), on a $f(g(a)) \leq f(g(b))$.
- 2. $g \circ f$: pour $x \in \mathbb{R}$,

$$g(f(x)) = \begin{cases} 2f(x) + 1 & \text{si } f(x) \ge 3 \\ f(x) & \text{si } f(x) < 3 \end{cases} = \begin{cases} 2f(x) + 1 & \text{si } x \ge 0 \text{ ou } x \le -\sqrt{3} \\ f(x) & \text{si } -\sqrt{3} < x < 0 \end{cases} = \begin{cases} 2x + 7 & \text{si } x \ge 0 \\ 2x^2 + 1 & \text{si } x \le -\sqrt{3} \\ x^2 & \text{si } -\sqrt{3} < x < 0 \end{cases}$$

3. $f \circ g$:pour $x \in \mathbb{R}$,

$$f(g(x)) = \begin{cases} g(x) + 3 & \text{si } g(x) \ge 0 \\ g(x)^2 & \text{si } g(x) < 0 \end{cases} = \begin{cases} g(x) + 3 & \text{si } 0 \le x < 3 \text{ ou } x \ge 3 \\ g(x)^2 & \text{si } x < 0 \end{cases} = \begin{cases} x + 3 & \text{si } 0 \le x < 3 \\ 2x + 4 & \text{si } x \ge 3 \\ x^2 & \text{si } x < 0. \end{cases}$$





Exercice 5.

Du fait que E possède une infinité d'éléments découle que (a_n) est une suite de nombres réels positifs.

1. Posons $n_0 = 1$ et pour tout entier p > 0, $n_p = \min\{n \in E ; n > 2n_{p-1}\}$. Ainsi, la suite (a_n) étant décroissante, que pour tout $p \in \mathbb{N}^*$,

$$\sum_{n=1}^{n_p} a_n \ge \sum_{k=1}^p (n_k - n_{k-1}) \frac{1}{n_k} = \sum_{k=1}^p \left(1 - \frac{n_{k-1}}{n_k} \right) > \sum_{k=1}^p \frac{1}{2} = \frac{p}{2}$$

ce qui entraı̂ne que $\sum_{k=0}^{+\infty} a_k = +\infty$. (Détails pour comprendre la première inégalité: pour chaque k on utilise l'inégalité: $a_{n_{k-1}+1} + a_{n_{k-1}+2} + \cdots + a_{n_k} \ge (n_k - n_{k-1}) \frac{1}{n_k}$ qui découle du fait que $a_{n_k} \ge \frac{1}{n_k}$ et que (a_n) est décroissante, donc on a $(n_k - n_{k-1})$ termes supérieurs à $1/n_k$).

2. Contre-exemple: posons, $\forall n \geq 0$,

$$a_n = \begin{cases} \frac{1}{n} & \text{si } n = k^2 \text{ avec } k \in \mathbb{N}^*, \\ 0 & \text{si } n \neq k^2 \text{ avec } k \in \mathbb{N}^*. \end{cases}$$

Alors la suite (a_n) n'est pas décroissante mais E possède une infinité d'éléments. De plus,

$$0 < \sum_{n=0}^{+\infty} a_n = \sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}.$$

Exercice 6.

On note $A_N = A \cap \{10^N, \dots, 10^{N+1} - 1\}$. Chaque élément de A_N comporte N+1 chiffres, et chaque chiffre doit être compris entre 0 et 8. Ainsi, le cardinal de A_N est inférieur ou égal à 9^{N+1} . On en déduit :

$$\sum_{k \in A_N} \frac{1}{k} \le \frac{9^{N+1}}{10^N} \le 9 \times \frac{9^N}{10^N}.$$

Posons $M = 9 \sum_{n \geq 0} \frac{9^n}{10^n}$. Alors, soit n un entier et N tel que $k_n \in A_N$. On a

$$\sum_{j \le n} \frac{1}{k_j} \le \sum_{j=0}^{N} \sum_{k \in A_j} \frac{1}{k} \le \sum_{j=0}^{N} 9 \times \frac{9^j}{10^j} \le M.$$

La série est à termes positifs et ses sommes partielles sont majorées : elle est donc convergente!