Corrigé 3.1 – mardi 24 septembre 2024

Exercice 0.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle qui converge vers $\ell\in\mathbb{R}$. Alors (en prenant $\epsilon=1$ dans la définition de convergence), il existe $N\in\mathbb{N}$ tel que $\forall n\geq N, \ |u_n-\ell|\leq 1$, et donc $\forall n\geq N, \ |u_n|\leq 1+|\ell|$. En posant

$$C = \max\{|u_0|, |u_1|, \dots, |u_{N-1}|, 1 + |\ell|\}$$

on a alors $\forall n \in \mathbb{N}$, $|u_n| \leq C$, ce qui montre que l'ensemble $\{u_n ; n \in \mathbb{N}\}$ est borné (caractérisation des ensembles bornés vue en cours), et donc que la suite (u_n) est bornée.

Exercice 1.

1. La suite réelle $(x_n)_{n\in\mathbb{N}}$ diverge si et seulement si

$$\forall \ell \in \mathbb{R}, \ \exists \epsilon \in \mathbb{R}_{+}^{*}, \ \forall N \in \mathbb{N}, \ \exists n \in \mathbb{N}, \ (n \geq N, \ \text{et} \ |x_{n} - \ell| > \epsilon).$$

- 2. Montrons que $(\cos(n))_{n\geq 0}$ diverge. Par l'absurde, supposons que $\lim_{n\to\infty}\cos(n)=\ell\in\mathbb{R}$.
 - (a) D'abord faisons une remarque d'ordre général (très utile!): si $(u_n)_{n\in\mathbb{N}}$ converge vers $\ell\in\mathbb{R}$, alors pour tout $k\in\mathbb{Z}$, la suite $(x_n)_{n\geq -k}$ définie par $x_n=u_{n+k}, \, \forall n\geq -k$ converge aussi vers $\ell\in\mathbb{R}$. En effet, soit $\epsilon>0$. Alors $\exists N\in\mathbb{N}, \, \forall n\geq N, \, |u_n-\ell|<\epsilon$ donc $\forall n\geq N-k, \, |x_n-\ell|=|u_{n+k}-\ell|<\epsilon$. Ceci montre $\lim_{n\to\infty}x_n=\ell$.
 - (b) Pour $n \geq 0$, on a:

$$\cos(n+2) = \cos(n) - 2\sin(1)\sin(n+1).$$

Comme $\lim_{n\to\infty}\cos(n+2) = \lim_{n\to\infty}\cos(n) = \ell$ et $\sin(1) \neq 0$, on a donc $\lim_{n\to\infty}\sin(n) = 0$ (par les propriétés algébriques des limites).

(c) De même, on a:

$$\sin(n+2) = \sin(n) + 2\sin(1)\cos(n+1)$$

et donc $\lim_{n\to\infty}\cos(n)=0$.

Mais comme $\sin^2(n) + \cos^2(n) = 1$ pour tout $n \in \mathbb{N}$, on obtient une contradiction (0 = 1) en passant à la limite (en utilisant les propriétés algébriques). Donc $\lim_{n\to\infty} \cos(n)$ n'existe pas.

Exercice 2.

Montrons que la suite $(x_n)_{n\geq 0}$ définie par

$$x_0 = 1$$
, $x_{n+1} = \frac{1}{2} \left(x_n + \frac{1}{2} \sin(2x_n) \right)$, $\forall n \in \mathbb{N}$,

est convergente et calculons sa limite. Pour cela, on va montrer que la suite est décroissante et minorée.

- 1. Minoration: Montrons par induction que $x_n > 0, \forall n \geq 0$:
 - Pour n = 0, on a $x_0 = 1 > 0$.
 - Supposons que $x_n > 0$, pour n = 0, 1, ..., N, et montrons que $x_{N+1} > 0$.

$$x_{N+1} = \frac{1}{2} \left(x_N + \frac{1}{2} \sin(2x_N) \right) = \frac{1}{4} \left(2x_N + \sin(2x_N) \right) \ge \frac{1}{4} \left(2x_N - |\sin(2x_N)| \right).$$

Puisque $\forall t > 0$, $|\sin t| < t$, et que par hypothèse d'induction $x_N > 0$, on a bien $x_{N+1} > 0$.

La suite est donc bornée inférieurement par zéro.

2. Décroissance: On voit facilement que

$$x_{n+1} = \frac{1}{2}x_n + \frac{1}{4}\sin(2x_n) \le \frac{1}{2}x_n + \frac{1}{4} \cdot 2x_n = x_n.$$

La suite est donc décroissante. Ainsi, il existe un $x \in \mathbb{R}$ tel que $\lim_{n \to \infty} x_n = x$.

3. Limite: Puisque $\lim_{n\to\infty} \sin(2x_n) = \sin(2x)$, on a

$$x = \frac{1}{2}x + \frac{1}{4}\sin(2x) \Rightarrow x = \frac{1}{2}\sin(2x) \Rightarrow 2x = \sin(2x),$$

d'où on obtient x = 0.

Conclusion : La limite de la suite est 0.

Exercice 3.

Théorème. Soient $(x_n)_{n=0}^{\infty}$ une suite croissante et $(y_n)_{n=0}^{\infty}$ une suite décroissante telles que $\lim_{n\to\infty}(x_n-y_n)=0$. Alors :

- 1. Pour tout $n \in \mathbb{N}$, on a $x_0 \le x_1 \le \cdots \le x_n \le y_n \le y_{n-1} \le \cdots \le y_0$.
- 2. $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n$.

Démonstration:

1. Posons $z_n = x_n - y_n$. On a pour $n \ge 1$:

$$z_n - z_{n-1} = (x_n - y_n) + (y_{n-1} - x_{n-1}) = (x_n - x_{n-1}) + (y_{n-1} - y_n) \ge 0.$$

Ainsi, $z_n \geq z_{n-1}$, et la suite $(z_n)_{n=0}^{\infty}$ est croissante. Puisque $\lim_{n\to\infty} z_n = 0$, on a $z_n \leq 0$, $\forall n \in \mathbb{N}$ (une suite croissante et majorée converge vers la borne supérieure de ses termes), et donc $x_n \leq y_n$.

2. Clairement, la suite $(x_n)_{n\geq 0}$ est croissante et majorée, donc elle converge vers x. La suite $(y_n)_{n\geq 0}$ est décroissante et minorée, donc elle converge vers y. De plus, on a :

$$|x-y| \le |x-x_n| + |x_n-y_n| + |y_n-y|$$

et comme $\lim_{n\to\infty}(x_n-y_n)=0$, on a en passant à la limite $|x-y|\leq 0$ et donc x=y.

Exercice 4.

1. Soit $\varepsilon>0$ fixé ; puisque $u_n\xrightarrow[n\to\infty]{}l,$ il existe $N_1\in\mathbb{N}$ tel que :

$$\forall n \in \mathbb{N}, \left(n > N_1 \implies |u_n - l| \le \frac{\varepsilon}{2}\right).$$

Soit $n \in \mathbb{N}$ tel que $n \ge N_1 + 1$. On a, d'après l'inégalité triangulaire,

$$|v_n - l| = \left| \frac{1}{n} \sum_{k=1}^n (u_k - l) \right| \le \frac{1}{n} \sum_{k=1}^n |u_k - l| = \frac{1}{n} \sum_{k=1}^{N_1} |u_k - l| + \frac{1}{n} \sum_{k=N_1+1}^n |u_k - l|. \tag{1}$$

D'une part,

$$\frac{1}{n} \sum_{k=N_1+1}^{n} |u_k - l| \le \frac{(n-N_1)}{n} \frac{\epsilon}{2} \le \frac{\epsilon}{2}$$

D'autre part, comme $\frac{1}{n}\sum_{k=1}^{N_1}|u_k-l|\xrightarrow[n\to\infty]{}0,$ il existe $N_2\in\mathbb{N}$ tel que

$$\forall n \in \mathbb{N}, \left(n \ge N_2 \implies \frac{1}{n} \sum_{k=1}^{N_1} |u_k - l| \le \frac{\varepsilon}{2} \right).$$

En notant $N = \max(N_1, N_2)$, on a:

$$\forall n \in \mathbb{N}, (n \ge N \implies |v_n - l| \le \varepsilon),$$

c'est-à-dire $v_n \xrightarrow[n\to\infty]{} l$.

Remarque: ici la rédaction est complète, mais pour ce genre d'exercice plus difficiles, on pourra à l'avenir se contenter d'une rédaction moins détaillée qui donne les grandes lignes du raisonnement – en insistant sur les étapes clés (ici la décomposition (1) après avoir fixé ϵ) –, sans nécessairement complètement détailler les parties plus "routinières". Bien entendu faire l'inverse – c'est-à-dire détailler les parties routinières et passer rapidement et vaguement sur les étapes clés – est tout à fait contre-indiqué! Savoir quoi mettre ou ne pas mettre comme détails de preuve est un art sans règles précises qui s'apprend en lisant et en rédigeant des mathématiques.

2. La suite $(u_n)_{n\geq 1}$ définie par $u_n=(-1)^n, \, \forall n\in\mathbb{N}^*$ est divergente et cependant $\lim_{n\to\infty}v_n=0$, puisque

$$\begin{cases} v_n = 0 & \text{si } n \text{ est pair,} \\ v_n = -\frac{1}{n} & \text{si } n \text{ est impair.} \end{cases}$$