Corrigé 12.1 – mardi 3 décembre 2024

NB: Par souci de concision, nous réutilisons dans cette correction les notations utilisées en cours pour la construction de l'intégrale de Riemann (\overline{S} , \underline{S} , M_i , m_i , etc). En général, il faudra les réintroduire (puisque ces notations ne sont pas conventionnelles).

Exercice 1.

Notons $f(x) = x^2$. Comme f est continue, les résultats du cours impliquent que cette intégrale est donnée par la limite de la suite $\bar{S}_{\sigma_n}(f)$, où σ_n est la subdivision :

$$(x_0 = 0, x_1, \dots, x_i, \dots, x_n = b), \text{ où } x_i = \frac{ib}{n}.$$

Nous avons donc $M_i = \left(\frac{ib}{n}\right)^2$, et on vérifie que :

$$\sum_{i=1}^{n} M_i \frac{b}{n}$$

converge vers $\frac{b^3}{3}$ en utilisant la formule :

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}.$$

(Si vous ne connaissez pas cette formule, établissez-la par récurrence sur n.)

Exercice 2.

Montrons la contraposée : supposons que g ne soit pas partout nulle. Il existe donc $z \in [a,b]$ avec g(z) > 0. Par continuité, il existe $a < x_1 < x_2 < b$ avec $g \ge \frac{g(z)}{2}$ sur tout $[x_1, x_2]$. (Rédigez pour vous-même l'implication de ce fait à partir de la définition de continuité en z!)

Pour la subdivision $\sigma=(x_0=a,x_1,x_2,x_3=b)$, nous avons $\underline{S}_{\sigma}(g)\geq m_2(x_2-x_1)$, puisque tous les m_i sont ≥ 0 . Donc :

$$\int_{a}^{b} g = \underline{S}(g) \ge \underline{S}_{\sigma}(g) \ge m_2(x_2 - x_1) \ge \frac{g(z)}{2}(x_2 - x_1) > 0.$$

En revanche, une fonction nulle partout sauf en un point sera intégrable d'intégrale nulle.

Exercice 3.

La difficulté est que pour les sommes de Darboux, il n'est pas vrai que $\underline{S}_{\sigma}(f+g) = \underline{S}_{\sigma}(f) + \underline{S}_{\sigma}(g)$ (même pour des fonctions continues). De même pour \overline{S}^{σ} .

Nous avons quand même $m_i(f+g) \ge m_i(f) + m_i(g)$ par définition de l'infimum. On en déduit $\underline{S}_{\sigma}(f+g) \ge \underline{S}_{\sigma}(f) + \underline{S}_{\sigma}(g)$, et donc $\underline{S}(f+g) \ge \underline{S}(f) + \underline{S}(g)$, c'est-à-dire :

$$\int_{a}^{b} (f+g) \ge \int_{a}^{b} f + \int_{a}^{b} g.$$

En argumentant de la même manière avec les sommes supérieures et $M_i(f+g) \leq M_i(f) + M_i(g)$, on obtient la deuxième inégalité. (Ou alors, remplacer f et g par leurs opposées).

Exercice 4.

Si g est identiquement nulle, il n'y a rien à montrer. Sinon : puisque g est continue et positive, on a :

$$\int_{a}^{b} g > 0$$

grâce à l'exercice 2 de cette série.

On a aussi, de la propriété de conservation de l'ordre de l'intégrale :

$$\int_{a}^{b} mg \le \int_{a}^{b} f \cdot g \le \int_{a}^{b} Mg,$$

où $m = \min_{x \in [a,b]} f(x)$ et $M = \max_{x \in [a,b]} f(x)$.

On a ainsi:

$$m \le \frac{\int_a^b f \cdot g}{\int_a^b g} \le M.$$

Puisque f est continue sur [a, b], le théorème des valeurs intermédiaires nous dit qu'il existe $c \in [a, b]$ tel que:

$$\frac{\int_{a}^{b} f \cdot g}{\int_{a}^{b} g} = f(c),$$

d'où le résultat. Le cas particulier du Thm. de la valeur moyenne suit du choix q=1.

Exercice 5.

Par la densité des nombres irrationnels, on déduit que $\underline{S}_{\sigma}(f) = 0$ pour toute subdivision σ , car $m_i = 0$ pour tout i. Il s'agit donc de démontrer que pour tout $\varepsilon > 0$, il existe une subdivision σ de [0,1] telle que $\bar{S}_{\sigma}(f) < \varepsilon$.

Soit donc $\varepsilon > 0$. Fixons un entier $n \in \mathbb{N}$ tel que $\frac{1}{n} < \frac{\varepsilon}{2}$. L'ensemble

$$A = \left\{ f^{-1}(x) \mid x \in \left\{ 1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n} \right\} \right\}$$

est fini. En effet, la préimage de chaque point dans $\left\{1,\frac{1}{2},\frac{1}{3},\ldots,\frac{1}{n}\right\}$ est un ensemble fini. Nous pouvons donc énumérer $A = \{a_0, a_1, \dots, a_m\}$ pour un entier m.

Nous considérons à présent une subdivision σ de [0,1] de pas plus petit que $\frac{\varepsilon}{4m}$, i.e. $x_i - x_{i-1}$ est borné par ce nombre pour tout i. Parmi les intervalles de σ , il y en a un certain nombre ℓ qui contiennent un point (ou plus) parmi les $\{a_0, a_1, \dots, a_m\}$; noter que $\ell \leq 2m$ car chaque point est au plus inclus dans deux intervalles de la forme $[x_{i-1}, x_i]$. La partie de la somme $\overline{S}_{\sigma}(f)$ constituée des ℓ termes correspondants est bornée par $\frac{\varepsilon}{4m} \cdot \ell$. Le reste de la somme est bornée par $\frac{1}{n+1}$ puisque f est bornée par ce nombre sur tout intervalle qui ne contient aucun élément de A. Au total, on a donc bien $\overline{S}_{\sigma}(f) < \frac{\varepsilon}{4m} \cdot \ell + \frac{1}{n+1} < \varepsilon$.