Corrigé 1.1 – mardi 10 septembre 2024

Exercice 1.

Démontrons qu'il n'existe pas de fraction (=nombre rationnel) x telle que $x^2 = \frac{2}{3}$. Commençons par une propriété élémentaire: Soit $c \in \mathbb{N}^*$ un entier positif. Alors si c est pair (de la forme c = 2k, $k \in \mathbb{N}^*$) alors c^2 est pair. De même, si c est impair (de la forme c = 2j + 1, $j \in \mathbb{N}$) alors c^2 est impair. De façon plus générale, le produit de deux nombres impairs est impair, le produit d'un nombre pair avec n'importe quel nombre est pair.

On en déduit que si c^2 est pair, alors c est pair et si c^2 est impair, alors c est impair.

Supposons, par l'absurde, qu'il existe $p, q \in \mathbb{N}^*$ tels que $\frac{p^2}{q^2} = \frac{2}{3}$ et que la fraction est irréductible (i.e. p et q n'ont pas d'autre diviseur commun que 1).

On a alors $3p^2 = 2q^2$. Par la propriété donnée au début, on a: p^2 est pair, donc p est pair, p = 2k avec $k \in \mathbb{N}^*$. Il vient alors: $3 \cdot 4k^2 = 2q^2$; et donc, q est pair. Ce qui contredit notre hypothèse que la fraction $\frac{p}{q}$ est irréductible. Donc il n'existe pas de fraction x telle que $x^2 = \frac{2}{3}$.

Exercice 2.

On cherche une solution $x \in \mathbb{R}$ de $x^2 + x + 1 = 0$. Trivialement, cette solution ne peut pas être x = 0, puisque $1 \neq 0$. On a alors, pour $0 \neq x \in \mathbb{R}$:

$$x^2 + x + 1 = 0 \Leftrightarrow x = -1 - x^2$$

ainsi que

$$x^2 + x + 1 = 0 \Leftrightarrow x = -1 - \frac{1}{x}.$$

On a aussi:

$$\left[(x = -1 - x^2) \text{ et } (x = -1 - \frac{1}{x}) \right] \quad \Rightarrow \quad \left[-1 - x^2 = -1 - \frac{1}{x} \right].$$

On a ici "implique" et pas "équivalent". Source de l'erreur: Une solution de la relation de droite n'est pas nécessairement solution de la relation de gauche. Et x=1 est bien solution de $-1-x^2=-1-\frac{1}{x}$, mais pas de $x^2+x+1=0$. En effet, x=1 satisfait $(-2)x=-1-x^2$ et $(-2)x=-1-\frac{1}{x}$.

Exercice 3.

Calculons $S = 2 + 2 \cdot 2^2 + 3 \cdot 2^3 + 4 \cdot 2^4 + \dots + 2024 \cdot 2^{2024}$. On a

$$S = \sum_{n=1}^{2024} n2^n = \sum_{n=1}^{2024} ((n-1)+1) \cdot 2^n = \sum_{n=1}^{2024} (n-1)2^n + \sum_{n=1}^{2024} 2^n$$
$$= 2\sum_{n=1}^{2023} n2^n + \sum_{n=1}^{2024} 2^n = 2S - 2 \cdot 2024 \cdot 2^{2024} + \sum_{n=1}^{2024} 2^n$$

Par ailleurs, en utilisant le fait que $(1 + x + x^2 + \cdots + x^n)(1 - x) = 1 - x^{n+1}$, on a

$$\sum_{n=1}^{2024} 2^n = 2^{2025} - 2.$$

Ainsi

$$S = 2S - 2024 \cdot 2^{2025} + 2^{2025} - 2 = 2S - 2023 \cdot 2^{2025} - 2$$
.

On conclut donc $S = 2 + 2023 \cdot 2^{2025}$.

Exercice 4.

- 1. (a) On a $x \cdot 0 = x \cdot (0+0)$ (axiome 1.3)
 - (b) Cela implique $x \cdot 0 = x \cdot 0 + x \cdot 0$ (axiome 1.9)
 - (c) En ajoutant $-(x \cdot 0)$ de part et d'autre, cela implique $x \cdot 0 x \cdot 0 = x \cdot 0 + x \cdot 0 x \cdot 0$
 - (d) Comme $x \cdot 0 x \cdot 0 = 0$ (axiome 1.4), on en déduit $0 = x \cdot 0 + 0 = x \cdot 0$ (axiome 1.3).

Remarquons que cette propriété est valide dans n'importe quel "corps" car nous n'avons utilisé que le 1er axiome de \mathbb{R} .

- 2. (a) $x \le y$ implique $x + (-x) \le y + (-x)$ (axiome 2.4)
 - (b) $x + (-x) \le y + (-x)$ implique $0 \le y x$ (axiome 1.4)
 - (c) $0 \le y x$ et $z \ge 0$ implique $z \cdot 0 \le z \cdot (y x)$ (axiome 2.5)
 - (d) Rappelons que d'après le point 1., on a $z \cdot 0 = 0$.
 - (e) Ainsi nous avons que $x \le y$ et $z \ge 0$ implique $0 \le z \cdot (y-x)$ en rassemblant les points précédents.
 - (f) D'après l'axiome 1.9, on a $z \cdot (y x) = z \cdot y z \cdot x$.
 - (g) En ajoutant $(z \cdot x)$ de part et d'autre de l'inégalité ci-dessus on a que $x \leq y$ et $z \geq 0$ implique $0 + z \cdot x \leq z \cdot y z \cdot x + z \cdot x$.
 - (h) On en déduit que $x \le y$ et $z \ge 0$ implique $z \cdot x \le z \cdot y$ (axiomes 1.3 et 1.4).

Remarquons que cette propriété est valide dans n'importe quel "corps ordonné" car nous n'avons utilisé que le 1er et le 2ème axiome de \mathbb{R} .