Corrigé 1.1 – mardi 10 septembre 2024

Exercice 1.

1. Soit $S_n^{(a)}(x) = \sum_{k=0}^n a_k x^k$, $S_n^{(b)}(x) = \sum_{k=0}^n b_k x^k$ et $S_n^{(a+b)}(x) = \sum_{k=0}^n (a_k + b_k) x^k$. Clairement, pour $x \in]-\rho, \rho[$, on a $S_n^{(a+b)}(x) = S_n^{(a)}(x) + S_n^{(b)}(x)$. Donc d'après la règle de la limite d'une somme de suites, on a que $(S_n^{(a+b)}(x))_n$ converge vers $S^{(a)}(x) + S^{(b)}(x)$. Ainsi la série entière

$$\sum_{k=0}^{\infty} (a_k + b_k) x^k$$

a un rayon de convergence R qui satisfait $R \ge \rho$, et pour $x \in]-\rho, \rho[$, sa somme vaut $S^{(a)}(x) + S^{(b)}(x)$.

Si l'on considère $a_k=1=-b_k, \ \forall k\in\mathbb{N}$ alors $R_a=R_b=1$ mais $R=+\infty$. Un exemple un peu moins trivial est le suivant: $a_k=1+2^k$ et $b_k=1-2^k, \ \forall k\in\mathbb{N}$. Alors $R_a=R_b=\frac{1}{2}$ mais $R=1>\min\{R_1,R_2\}$.

2. Montrons d'abord l'inégalité sur le rayon de convergence de la série entière produit. On a pour tout $n \in \mathbb{N}$ et $x \in \mathbb{R}$:

$$\sum_{k=0}^{n} |c_k x^k| \le \sum_{k=0}^{n} \left(\sum_{i=0}^{k} |a_i| \cdot |b_{k-i}| \right) |x|^k \le \sum_{k=0}^{2n} \left(\sum_{\substack{i+j=k \ 0 \le i \le n \ 0 \le j \le n}} |a_i| \cdot |b_j| \right) |x|^k = \left(\sum_{i=0}^{n} |a_i x^i| \right) \left(\sum_{j=0}^{n} |b_j x^j| \right) |x|^k$$

Ainsi, si x est tel que $|x| \le \rho$, alors comme chacun des facteurs du produit du membre de droite est majoré indépendamment de n. On en déduit que la série $\sum c_k x^k$ converge absoluement. Ceci montre que $R \ge \rho$.

Pour calculer la limite, la structure de série entière n'est pas importante, donc plaçons nous dans le cadre général des séries en posant $u_n = a_n x^n$, $v_n = b_n x^n$ et $w_n = c_n x^n = \sum_{k=0}^n u_k v_{n-k}$, pour $n \in \mathbb{N}$ et $|x| < \rho$. Montrons que la différence entre les sommes partielles $W_n = \sum_{k=0}^n w_k$ et le produit des sommes partielles $U_n = \sum_{k=0}^n u_k$ et $V_n = \sum_{k=0}^n v_k$ tend vers 0. Pour faciliter les calculs, considérons en fait (W_n) à l'indice 2n, de façon à ce que la différence soit entre ces sommes partielles soit formée des indices indiqués par des points sur la figure ci-dessous:

Sur l'axe des abcisses nous avons les indices de la suite (u_n) , et sur l'axe des ordonnées les indices de la suite (v_n) . Le produit $U_n \cdot V_n$ contient tous les produits $u_i \cdot v_j$ pour les paires d'indices (i,j) dans l'ensemble indiqué " K_n ". La somme partielle W_{2n} contient tous les indices sous la droite d'équation j = 2n - i. Passons maintenant aux calculs:

$$W_{2n} - U_n \cdot V_n = \sum_{i=n+1}^{2n} \sum_{j=0}^{2n-i} u_i v_j + \sum_{j=n+1}^{2n} \sum_{i=0}^{2n-j} u_i v_j.$$

Comme les séries $\sum u_k$ et $\sum v_k$ sont absolument convergentes, il existe M>0 tel que $\sum_{k=0}^{\infty} |u_k| < M$ et $\sum_{k=0}^{\infty} |v_k| < M$. Soit $\epsilon > 0$. On a aussi, par la convergence absolue de ces séries qu'il existe un indice $N \in \mathbb{N}$ tel que pour tout $n \geq N$, on a

$$\sum_{i=n+1}^{\infty} |u_i| < \frac{\epsilon}{2M}, \quad \text{et} \quad \sum_{j=n+1}^{\infty} |v_j| < \frac{\epsilon}{2M}.$$

Ainsi pour $n \geq N$,

$$|W_{2n} - U_n \cdot V_n| \le \sum_{i=n+1}^{2n} |u_i| \sum_{j=0}^{2n-i} |v_j| + \sum_{i=n+1}^{2n} |v_j| \sum_{j=0}^{2n-j} |u_i| \le M \cdot \frac{\epsilon}{2M} + M \cdot \frac{\epsilon}{2M} = \epsilon.$$

Ainsi la suite $(W_{2n} - U_n \cdot V_n)$ converge vers 0 et comme $U_n \cdot V_n$ converge vers le produit des séries, on obtient la conclusion.

Exercice 2.

1. Soit $f(x) = (1+x)^{\alpha}$ avec $\alpha \in \mathbb{R}^*$. On a alors f(0) = 1 et

$$\alpha f(x) - (1+x)f'(x) = \alpha (1+x)^{\alpha} - (1+x)\alpha (1+x)^{\alpha-1} = 0.$$

NB: Pour déterminer l'équation différentielle, on calcule $f'(x) = \alpha(1+x)^{\alpha-1}$, puis l'on cherche un lien entre f et f'. f' est obtenue en multipliant f par α et en la divisant par (1+x). Donc $(1+x)f'(x) = \alpha f(x)$, ce qui donne l'équation différentielle.

2. Si g est une solution de l'équation différentielle, alors g/f est dérivable sur]-1,1[et l'on a pour tout $x \in]0,1[$

$$\left(\frac{g}{f}\right)'(x) = \frac{1}{f(x)^2} \left(g'(x)f(x) - g(x)f'(x)\right)$$

$$= \frac{1}{f(x)^2} \left(g'(x)(1+x)^{\alpha} - g(x)\alpha(1+x)^{\alpha-1}\right)$$

$$= \frac{(1+x)^{\alpha-1}}{f(x)^2} \left(g'(x)(1+x) - \alpha g(x)\right) = 0.$$

Ainsi (g/f) est constante sur] -1,1[. Comme par ailleurs (g/f)(0)=1, il s'ensuit que f=g sur] -1,1[.

3. On cherche f sous la forme $f(x) = \sum_{n=0}^{\infty} a_n x^n$. Si R > 0 est le rayon de convergence de cette série, on a pour $x \in]-R, R[$ que $f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}$. On obtient

$$0 = \alpha \sum_{n=0}^{\infty} a_n x^n - (1+x) \sum_{n=1}^{\infty} n a_n x^{n-1}$$

$$= \alpha \sum_{n=0}^{\infty} a_n x^n - \sum_{n=0}^{\infty} (n+1) a_{n+1} x^n - \sum_{n=1}^{\infty} n a_n x^n$$

$$= \sum_{n=0}^{\infty} \left(\alpha a_n - (n+1) a_{n+1} - n a_n \right) x^n$$

Par unicité du développement en série entière (ici de la fonction constante égale à 0), on a $(\alpha - n)a_n - (n+1)a_{n+1} = 0$, autrement dit, $a_{n+1} = \frac{\alpha - n}{n+1}a_n$ pour tout $n \in \mathbb{N}$. Par ailleurs, la condition f(0) = 1 impose l'initialisation $a_0 = 1$ et on a alors par récurrence immédiate pour $n \ge 1$

$$a_n = \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!}.$$

Pour calculer le rayon de convergence de cette série, on utilise le critère de d'Alembert : pour $x \neq 0$,

$$\left| \frac{a_{n+1}x^{n+1}}{a_nx^n} \right| = \left| \frac{(\alpha - n)x}{n+1} \right| \xrightarrow{n \to \infty} |x|,$$

donc R=1. Par unicité de la solution à l'équation différentielle (question 2), on a donc, pour $x\in]-1,1[$

$$(1+x)^{\alpha} = 1 + \sum_{n=1}^{\infty} \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!} x^{n}.$$

Exercice 3.

- 1. Par récurrence immédiate, on obtient que $a_k > 0$ pour tout $k \in \mathbb{N}^*$, et donc, comme $a_{k+1} = a_k + a_{k-1} > a_k$, $\forall k \in \mathbb{N}^*$, que la suite est (strictement) croissante. Il s'ensuit $a_{k+1} = a_k + a_{k-1} \le 2a_k$ et donc $\frac{a_{k+1}}{a_k} \le 2$, $\forall k \in \mathbb{N}^*$ (on vérifie directement que la relation est aussi vraie pour k = 0).
- 2. On utilise le critère de D'Alembert version limsup:

$$\lim \sup_{k \to \infty} \left| \frac{a_{k+1} x^{k+1}}{a_k x^k} \right| \le 2|x|.$$

Ceci montre que le rayon de convergence de la série entière R satisfait $R \ge 1/2$.

3. Soit $x \in]-1/2, 1/2[$. On a

$$(x^{2} + x - 1)f(x) = \sum_{k=1}^{\infty} a_{k}x^{k+1} + \sum_{k=1}^{\infty} a_{k}x^{k} - \sum_{k=1}^{\infty} a_{k}x^{k-1}$$

$$= \sum_{k=2}^{\infty} a_{k-1}x^{k} + \sum_{k=1}^{\infty} a_{k}x^{k} - \sum_{k=0}^{\infty} a_{k+1}x^{k}$$

$$= a_{1}x - a_{1} - a_{2}x + \sum_{k=2}^{\infty} (a_{k-1} + a_{k} - a_{k+1})x^{k}$$

$$= -1.$$

On obtient ainsi $f(x) = -1/(x^2 + x - 1)$.

4. Les racines du polynôme $X^2 + X - 1$ sont $\phi_1 = (-1 - \sqrt{5})/2$ et $\phi_2 = (-1 + \sqrt{5})/2$. On observe en particulier que le polynôme ne s'annule pas sur]-1/2,1/2[et que $\phi_1\phi_2 = -1$ (relation utile dans les calculs qui suivent). On cherche donc une décomposition en éléments simples de la forme suivante avec $\alpha, \beta \in \mathbb{R}$:

$$\frac{-1}{x^2 + x - 1} = \frac{-1}{(x - \phi_1)(x - \phi_2)} = \frac{\alpha}{x - \phi_1} + \frac{\beta}{x - \phi_2} = \frac{\alpha(x - \phi_2) + \beta(x - \phi_1)}{(x - \phi_1)(x - \phi_2)}.$$

Cela donne un système d'équations dont les solutions sont $\alpha = 1/\sqrt{5} = -\beta$. On obtient alors, pour $x \in]-1/2,1/2[$:

$$f(x) = \frac{1}{\sqrt{5}} \frac{1}{(-\phi_1)} \frac{1}{1 - x/\phi_1} - \frac{1}{\sqrt{5}} \frac{1}{(-\phi_2)} \frac{1}{1 - x/\phi_2}$$

$$= \frac{1}{\sqrt{5}} \frac{1}{(-\phi_1)} \sum_{k=0}^{\infty} (x/\phi_1)^k - \frac{1}{\sqrt{5}} \frac{1}{(-\phi_2)} \sum_{k=0}^{\infty} (x/\phi_2)^k$$

$$= \sum_{k=0}^{\infty} \left(\frac{1}{\sqrt{5}} \left(\frac{1}{\phi_2^{k+1}} - \frac{1}{\phi_1^{k+1}} \right) \right) x^k$$

$$= \sum_{k=1}^{\infty} \left(\frac{1}{\sqrt{5}} \left(\frac{1}{\phi_2^k} - \frac{1}{\phi_1^k} \right) \right) x^{k-1}$$

5. Par unicité du développement en série entière, on a donc pour $k \in \mathbb{N}^*$

$$\sqrt{5}a_k = \frac{1}{\phi_2^k} - \frac{1}{\phi_1^k}
= \frac{\phi_1^k - \phi_2^k}{(-1)^k}
= (-\phi_1)^k - (-\phi_2)^k
= \left(\frac{1+\sqrt{5}}{2}\right)^k - \left(\frac{1-\sqrt{5}}{2}\right)^k$$

ce qui conclut la preuve.

6. On a $a_k = \frac{1}{\sqrt{5}}(\varphi^k - \psi^k)$ avec $\varphi = (1 + \sqrt{5})/2$ et $\psi = (1 - \sqrt{5})/2$. En utilisant que $2 < \sqrt{5} < 3$, on en déduit que $\varphi > 1$ et $|\psi| < 1$. On a donc

$$\frac{a_{k+1}}{a_k} = \frac{\varphi^{k+1} - \psi^{k+1}}{\varphi^k - \psi^k} = \varphi \frac{1 - (\psi/\varphi)^{k+1}}{1 - (\psi/\varphi)^k} \xrightarrow[k \to \infty]{} \varphi.$$

Exercice 4.

1. Comme f est analytique, si $\delta > 0$ est assez petit on peut développer f en série entière au voisinage de a:

$$f(x) = \sum_{n=0}^{\infty} a_n (x - a)^n, \quad \forall x \in]a - \delta, a + \delta[.$$

Si tous les coefficients a_n pour $n \ge 1$ sont nuls, alors $f(x) = a_0$ donc |f(x) - f(a)| = 0 et |f'(x)| = 0 donc la conclusion est trivialement vérifiée.

Dans le cas contraire, soit $N \ge 1$ l'indice du premier coefficient non-nul à partir de l'indice 1. On a alors, au voisinage de a,

$$f(x) - f(a) = a_N(x - a)^N + o((x - a)^N) = (x - a)^N (a_N + o(1))$$

et

$$f'(x) = Na_N(x-a)^{N-1} + o((x-a)^{N-1}) = (x-a)^{N-1}(Na_N + o(1)).$$

En posant $\theta = \frac{N-1}{N} \in [0,1[$, on a alors que |f(x) - f(a)| > 0 au voisinage de a et

$$\frac{|f'(x)|}{|f(x) - f(a)|^{\theta}} = \frac{|Na_N + o(1)|}{|a_N + o(1)|^{\theta}} \xrightarrow[x \to a]{} N|a_N|^{1-\theta} > 0.$$

Ainsi, en posant par exemple $C = \frac{1}{2}N|a_N|^{1-\theta}$, il existe $\delta > 0$ tel que pour tout $x \in]a - \delta, a + \delta[$, on a

$$|f'(x)| \ge C|f(x) - f(a)|^{\theta}.$$