Corrigé 10.2 – jeudi 21 novembre 2024

Exercice 1.

1. On note $R' = \sup\{|x| \; ; \; (a_n x^n) \text{ born\'ee}\}$. Clairement, si $x \in \mathbb{R}$ est tel que |x| > R' alors la série $\sum a_n x^n$ ne converge pas et donc $|x| \ge R$, donc $R' \ge R$.

Soit maintenant $y \in \mathbb{R}^*$ tel que |y| < R'. Alors, par les propriétés du sup, il existe $x \in]|y|, R']$ tel que $a_n x^n$ est bornée – disons $|a_n x^n| \le C \in \mathbb{R}$ – et donc en raisonnant comme en cours, en posant $\mu = y/x$ on a $|\mu| < 1$ et

$$|a_n y^n| = |a_n x^n \mu^n| \le C|\mu|^n.$$

Comme la série géométrique $\sum_{n=0}^{\infty} |\mu|^n$ converge, on a par critère de comparaison que $\sum a_n y^n$ converge (absolument). Ainsi |y| < R. Ainsi $R' \le R$. On a donc montré R = R'.

- 2. Soit R le rayon de convergence de cette série. Comme $(a_n \cdot 1^n)$ est bornée par M, on a par le résultat du point précédent que $R \ge 1$. Maintenant, si |x| > 1, on a $|a_n x^n| \ge m|x|^n \xrightarrow[n \to \infty]{} +\infty$ et donc la série diverge. Ceci montre que $R \le 1$ et conclut la démonstration.
- 3. Il suffit de remarquer que la suite $(a_n^{\alpha}r^n)$ est bornée si et seulement si la suite $(a_nr^{n/\alpha})$ (obtenue en prenant la puissance $1/\alpha$ de la première) est bornée. Ainsi, si $r < R^{\alpha}$, alors $r^{1/\alpha} < R$ et donc les suites $(a_nr^{n/\alpha})$ et $(a_n^{\alpha}r^n)$ sont bornées. De même, si $r > R^{\alpha}$, de sorte que $r^{1/\alpha} > R$, alors les suites $(a_nr^{n/\alpha})$ et $(a_n^{\alpha}r^n)$ ne sont pas bornées. Ceci prouve que le rayon de convergence de la série $\sum_n a_n^{\alpha}x^n$ est égal à R^{α} .

Exercice 2.

Nous justifions brièvement le raisonnement qui conduit au rayon de convergence dans chaque cas, sans nécessairement donner tous les détails:

1. $\sum_{n=1}^{\infty} \frac{2^n x^{3n}}{n}$. On utilise le critère de d'Alembert:

$$\left| \frac{2^{n+1} x^{3(n+1)}}{n+1} \frac{n}{2^n x^{3n}} \right| = \frac{n}{n+1} \cdot 2 \cdot |x|^3 \to 2 \cdot |x|^3.$$

Donc, par le critère de d'Alembert, $R = 2^{-1/3}$.

- 2. $\sum_{n=1}^{\infty} \log(1+\sin(1/n))x^n$. En composant les DL de sin en 0 et log en 1, on trouve que $a_n = \log(1+\sin(1/n)) = 1/n + o(1/n)$ et donc $|\frac{a_{n+1}x^{n+1}}{a_nx_n}| \to |x|$. Donc par le critère de d'Alembert, on a R=1.
- 3. $\sum_{n=1}^{\infty}(e^{1/n}-1)x^n.$ Par le DL de exp en 0, on a $e^{1/n}-1=1/n+o(1/n).$ Donc comme précédemment, R=1.
- 4. $\sum_{n=1}^{\infty}a^{\sqrt{n}}x^n,\,a>0.$ Appliquons le critère de Cauchy: pour a>0

$$|a^{\sqrt{n}}x^n|^{1/n} = |a|^{\frac{1}{\sqrt{n}}} \cdot |x| \xrightarrow[n \to \infty]{} |x|$$

car $|a|^{\frac{1}{\sqrt{n}}} = \exp(\log(a)/\sqrt{n}) \to 1.$ Donc par le critère de Cauchy, R=1.

5. $\sum_{n=1}^{\infty} x^{n!}$. Appliquons le critère de Cauchy: on a pour $n \ge 1$, $|x^{n!}|^{1/n} = |x|^{(n-1)!}$ et cette suite converge vers 0 si |x| < 1 et diverge vers $+\infty$ si |x| > 1. Donc R = 1.

6. $\sum_{n=1}^{\infty} n^{\log(n)} x^n$. Appliquons le critère de Cauchy: on a pour $n \ge 1$: $|n^{\log(n)} x^n|^{1/n} = \exp(\log(n)^2/n)|x| \to |x|$. Donc par le critère de Cauchy, R = 1. Dans ce raisonnement, on a utilisé que $\log(n)^2/n \to 0$ qui peut s'obtenir par une double application de la règle de Bernoulli l'Hôpital en $+\infty$:

$$\lim_{n\to\infty}\frac{(\log n)^2}{n}=\lim_{n\to\infty}\frac{2(\log n)}{n}=\lim_{n\to\infty}\frac{2}{n}=0.$$

Exercice 3.

 $1. \ [\Longrightarrow]$

Supposons que (f_n) converge uniformément vers f sur D. Alors, pour tout $\varepsilon > 0$, il existe $N_{\varepsilon} \in \mathbb{N}$ tel que :

- si $n \geq N_{\varepsilon}$, alors, pour tout $x \in I$, $|f_n(x) f(x)| < \frac{\varepsilon}{2}$,
- si $p \ge N_{\varepsilon}$, alors, pour tout $x \in I$, $|f_p(x) f(x)| < \frac{\varepsilon}{2}$.

On a alors, pour tout x de D et $n, p \geq N_{\varepsilon}$,

$$|f_p(x) - f_n(x)| \le |f_p(x) - f(x)| + |f(x) - f_n(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Ceci prouve bien que (f_n) est uniformément de Cauchy sur I.

$$[\iff]$$

Supposons que (f_n) est uniformément de Cauchy. Pour tout x de D, $(f_n(x))$ est une suite de Cauchy dans \mathbb{R} , donc $(f_n(x))$ converge. On note f(x) sa limite.

On a:

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N}, \quad \forall p, n \ge N \quad \forall x \in D \quad |f_n(x) - f_p(x)| \le \varepsilon.$$

Puis, on fait tendre p vers $+\infty$:

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \ge N \quad \forall x \in D \quad |f_n(x) - f(x)| \le \varepsilon.$$

Donc, (f_n) converge uniformément vers f sur D.

2. Fixons $\varepsilon > 0$. Puisque $(\sum a_n)$ est convergente, elle satisfait le critère de Cauchy, donc:

$$\exists N \in \mathbb{N}, \quad \forall n, p \in \mathbb{N}, \quad (N \le n$$

Soient alors $n, p \in \mathbb{N}$ vérifiant $N \leq n < p$ et soit $x \in D$, on a par l'inégalité triangulaire:

$$|f_{n+1}(x) + \ldots + f_p(x)| \le |f_{n+1}(x)| + |f_{n+2}(x)| + \ldots + |f_p(x)| \le a_{n+1} + a_{n+2} + \ldots + a_p < \varepsilon.$$

Donc la suite des sommes partielles $x \mapsto S_n(x) = \sum_{k=0}^n f_k(x)$ vérifie le critère de Cauchy uniforme, et donc la série entière converge uniformément sur D.

- 3. Considérons la série de fonctions définie sur \mathbb{R} par les sommes partielles $S_n(x) = \sum_{k=1}^n \frac{(-1)^k}{k}$, $\forall n \in \mathbb{N}$ (pas de dépendance en x). Chaque fonction étant constante, cette série converge uniformément vers la fonction constante égale à la somme de la série harmonique alternée. En revanche, comme la série harmonique diverge, cette série ne converge pas normalement.
- 4. Chaque somme partielle de cette série est une fonction rationnelle définie sur \mathbb{R} et continue sur \mathbb{R} . En revanche la différence entre 2 termes successifs n'est pas bornée et donc la série ne converge pas uniformément sur \mathbb{R} . Montrons que la série converge uniformément sur tout intervalle borné, ce qui sera suffisant pour notre but. Pour |x| < C, on a

$$\left|\frac{k^2 + x^4}{k^4 + x^2}\right| \le \frac{k^2 + C^4}{k^4 + C^2} = \frac{1}{k^2} \frac{1 + C^4/k^2}{1 + C^2/k^2} = O(1/k^2).$$

Comme la série $\sum_{k=1}^{\infty} 1/k^2$ converge, la série de fonctions converge normalement sur [-C,C]. Par ailleurs, pour un x donné, en prenant C=|x|, la borne ci-dessus montre que la série converge ponctuellement sur $\mathbb R$ vers une fonction $f:\mathbb R\to\mathbb R$. Par le résultat de la question 2, la série converge uniformément vers f sur tout intervalle borné, et donc f est continue sur tout intervalle borné, et donc f est continue sur $\mathbb R$.

Exercice 4.

1. On suppose que $f'(x_0) > 0$; puisque f' est continue, il existe un intervalle ouvert I contenant x_0 tel que $f'(x) > 0 \,\forall x \in I$.

Donc f est strictement croissante sur I. Donc f est injective et continue sur I, donc par le thm. du cours : $f: I \to f(I)$ admet une fonction réciproque $f^{-1}: f(I) \to I$ qui est continue et strictement monotone.

Nous avons aussi par un thm. du cours, que f^{-1} est dérivable, et $(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$. De part son expression (composition de fonctions continues), on a $(f^{-1})' \in C^0(f(I))$ et donc $f^{-1} \in C^1(f(I))$.

2. On peut considérer la fonction

$$f(x) = \begin{cases} x + 2x^2 \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0, \\ 0 & \text{si } x = 0 \end{cases}$$

et alors on a

$$f'(x) = \begin{cases} 1 + 4x \sin\left(\frac{1}{x}\right) - 2\cos\left(\frac{1}{x}\right) & \text{si } x \neq 0, \\ 1 & \text{si } x = 0. \end{cases}$$

Donc $f'(0) \neq 0$, mais pour tout les voisinages de x = 0 on peut trouver des points t_1, t_2 t.q. $f'(t_1) > 0$ et $f'(t_2) < 0$, et donc f n'est pas monotone, mais une fonction injective et continue est monotone (théorème du cours). Donc, f n'est injective sur aucun intervalle ouvert non vide contenant 0.