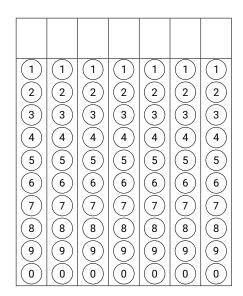
1	1 2	2	1		6	1 7
!		3	4	J	U	/

Surname, First name

MATH-100(a)-Analyse avancée Examen blanc *4 Dec, 2024, 16:15-19:15*



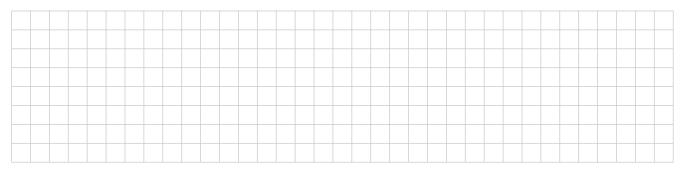
Durée de l'examen: 3 heures.

Les documents, formulaires et calculatrices ne sont pas autorisés.

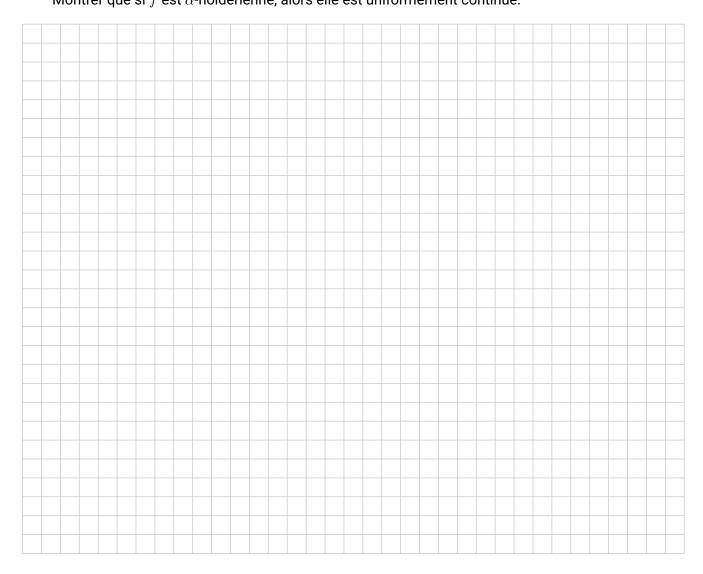
Si vous manquez de place pour une question, utiliser les dernières feuilles du livret et bien indiquer le renvoi de page.

Continuité uniforme

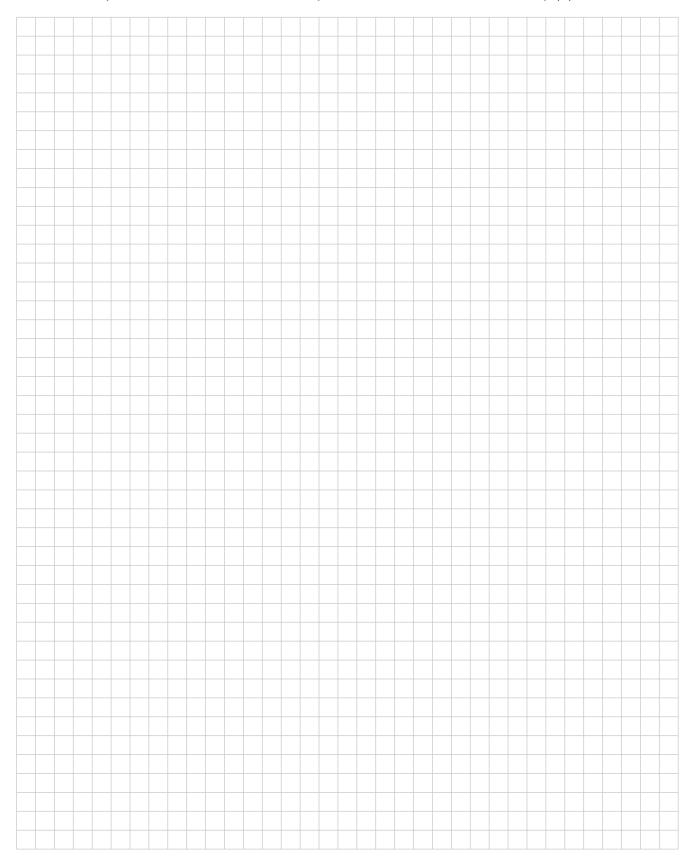
1a Soit $I \subset \mathbb{R}$ un intervalle et $f: I \to \mathbb{R}$ une fonction. Donner la définition de "f est uniformément continue".



1b Pour $\alpha \in]0,1]$ et $f:I \to \mathbb{R}$, on dit que f est α -höldérienne si la propriété suivante est satisfaite : $\exists C \in \mathbb{R}_+^*$, $\forall x,y \in I$, $|f(x)-f(y)| \leq C \cdot |y-x|^{\alpha}$. Montrer que si f est α -höldérienne, alors elle est uniformément continue.



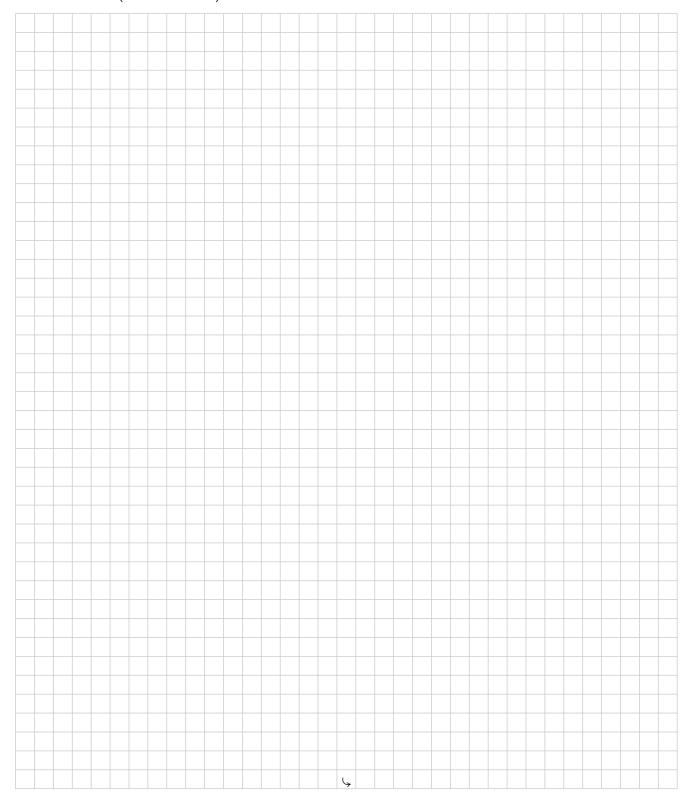
 $\textbf{1c} \quad \text{Montrer que si } I \text{ est un intervalle born\'e et } f \text{ est uniform\'ement continue alors } f\left(I\right) \text{ est born\'e}.$

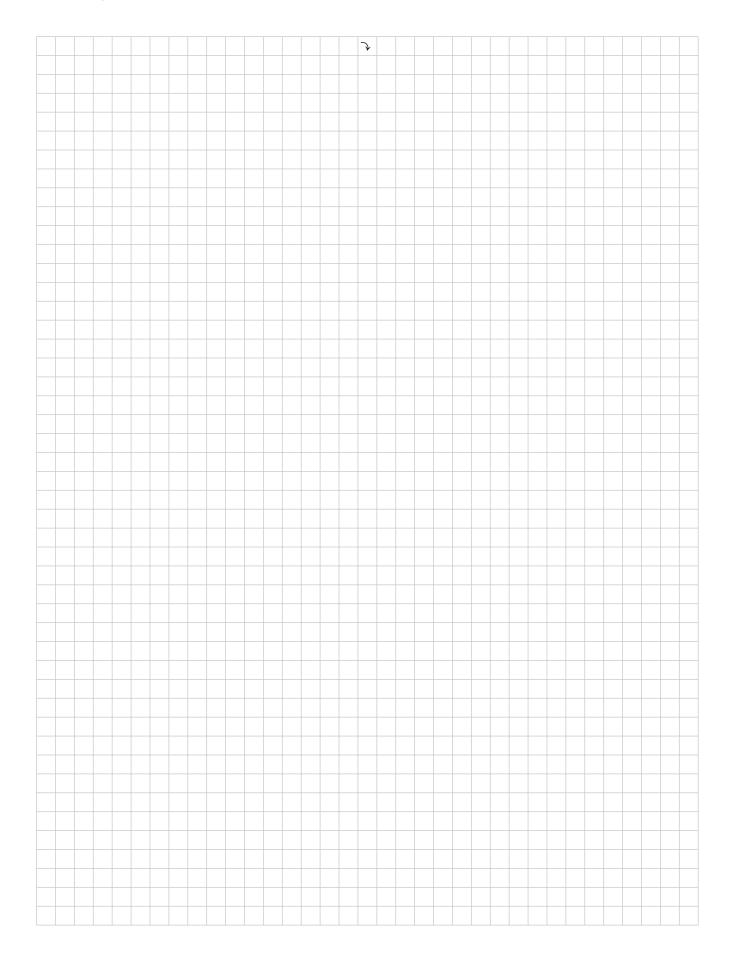


0339561004

Suites et récurrence

Soit (a_n) une suite dans \mathbb{R}_+ telle que $S = \sum_{n=0}^{+\infty} a_k < +\infty$. Montrer que la suite (α_n) définie par $\alpha_0 = 0$ et $\alpha_{n+1} = \frac{1}{2} \left(\alpha_n + \sqrt{\alpha_n^2 + a_n} \right)$ est convergente.

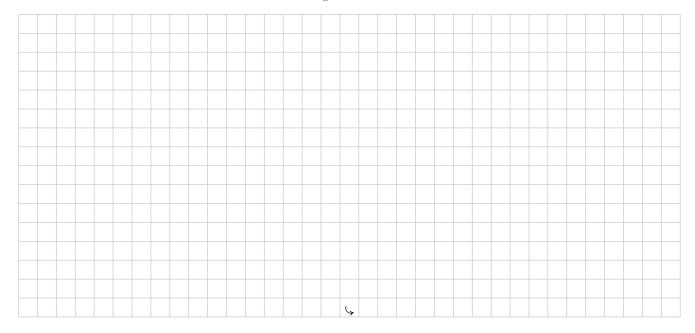




Étude de limites et de sommes

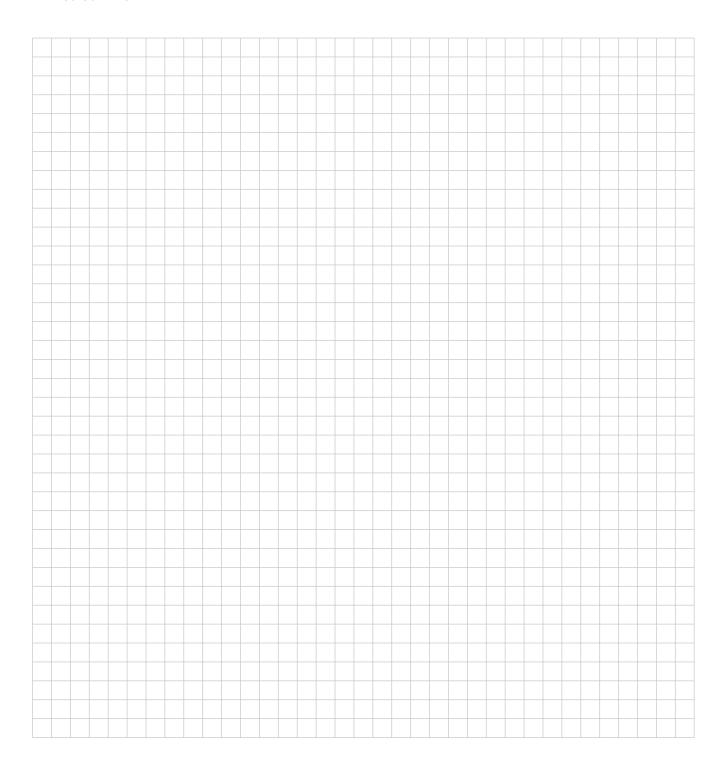
3a Soit (u_n) la suite définie par $u_n = \frac{1}{n^3} \sum_{k=1}^{n^2} \log\left(\frac{1}{3^k \sin(2/n)}\right)$, $\forall n \in \mathbb{N}^*$. Calculer $\lim_{n \to \infty} u_n$.

3b Déterminer la valeur de la limite $\lim_{x\to 0} \frac{\log(\cos(x))}{x^k}$ en fonction de la valeur de $k\in\mathbb{Z}$.



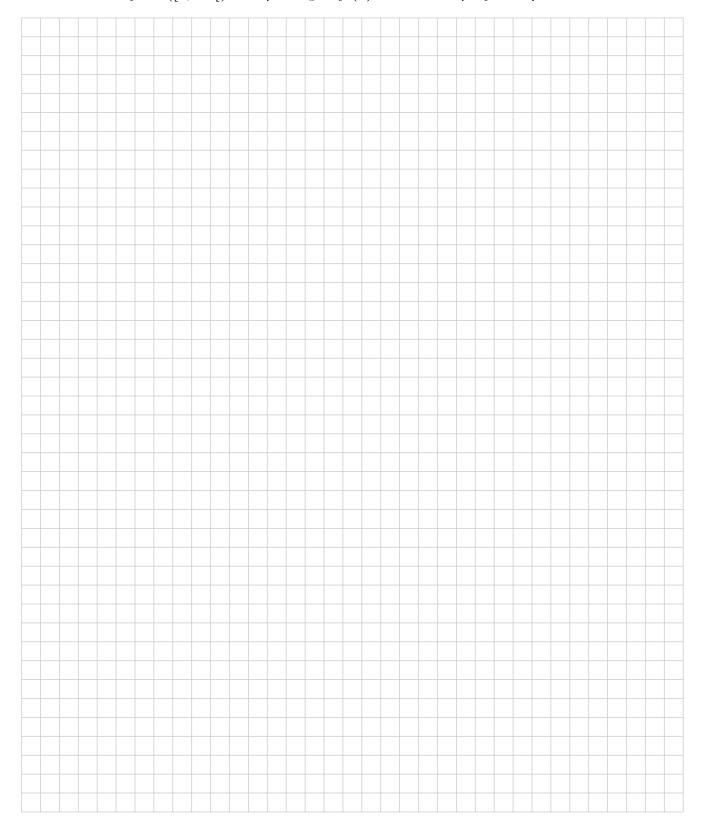
0339561007

3c Déterminer l'ensemble des valeurs de $x \in \mathbb{R}$ pour lesquelles la série $\sum_{n=0}^{+\infty} \frac{x^n + n}{2^n}$ converge, et déterminer sa somme.



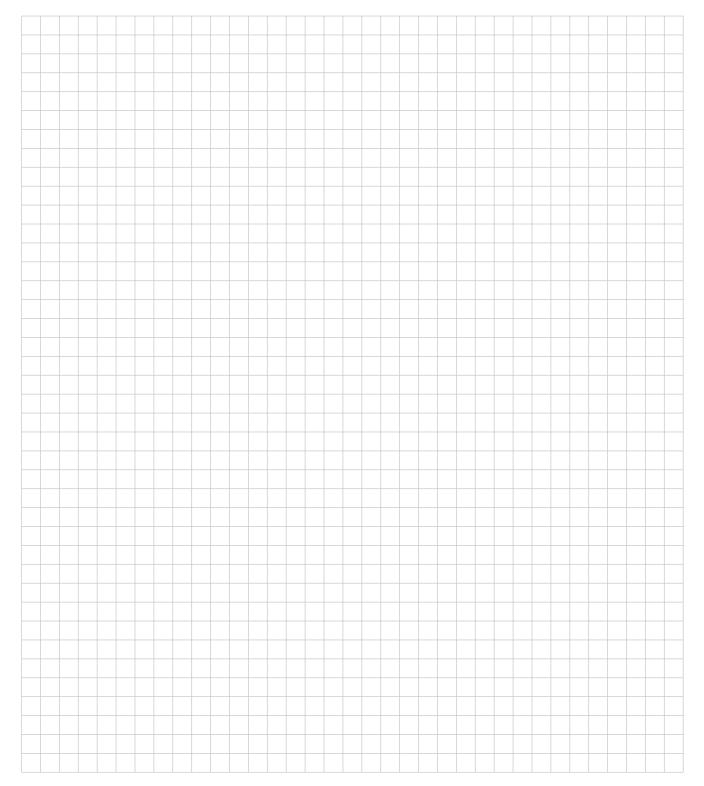
Dérivabilité

4 Soit $\ell \in \mathbb{R}$ et $f \in \mathcal{C}^1([0, +\infty[)$ telle que $\lim_{x\to\infty} f'(x) = \ell$. Montrer que f est Lipschitzienne.



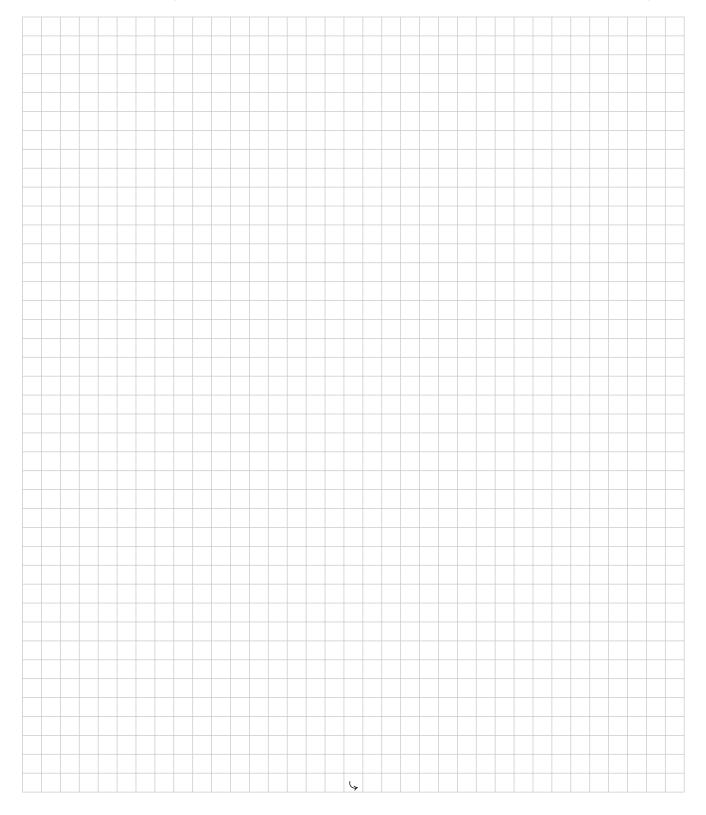
Suites de fonctions

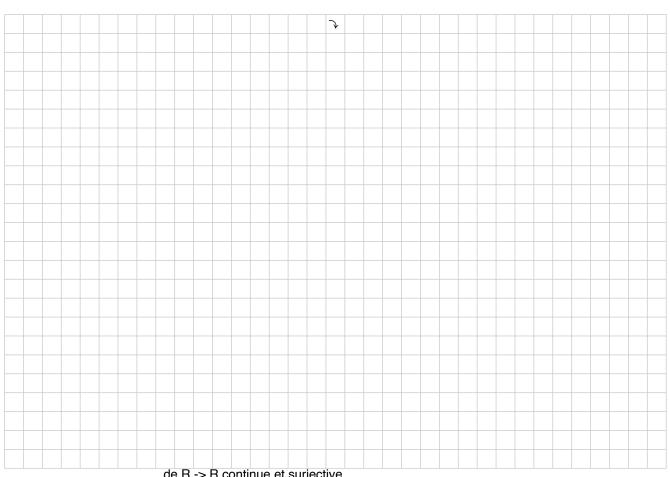
Vrai ou Faux? Soit $(f_k)_{k\in\mathbb{N}}$ une suite de fonctions définies sur un ensemble $D\subset\mathbb{R}$. Si la suite de fonctions $S_n=\sum_{k=0}^n f_k$ converge uniformément, alors la suite de fonctions (f_k) converge uniformément vers 0. (Si c'est vrai, le prouver, si c'est faux, donner un contre-exemple).



Continuité

6a Montrer qu'il n'existe pas de fonction $f: \mathbb{R} \to \mathbb{R}$ continue surjective qui atteint chaque valeur de \mathbb{R} exactement 2 fois (c'est-à-dire telle que chaque point de \mathbb{R} a exactement 2 antécédents par f).





de R -> R continue et surjective

6b Donner un exemple de fonction qui atteint chaque valeur exactement 3 fois (c'est-à-dire telle que chaque réel a exactement 3 antécédents). Le tracé d'une portion du graphe qui permet de définir la

fonction sans ambigüité sera suffisant.

Sous-suites

7 Vrai ou faux? Soit (a_n) une suite réelle telle que pour tout n>1, la sous-suite a_n,a_{2n},a_{3n},\ldots est convergente. Alors (a_n) est convergente. (Si c'est vrai, le prouver, si c'est faux, donner un contre-exemple).

