- (1) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction telle que pour tout $x \in \mathbb{R}$, il existe ℓ_x telle que $f(x+h) = f(x) + \ell_x + \mathcal{O}(h^2)$ quand $h \to 0$. Alors f est dérivable. Vrai ou faux ?
- (2) Calculez $\int_{\pi^2/4}^{\pi^2} \frac{1}{x} \sin(\sqrt{x}) dx$.
- (3) Soient $f: \mathbb{R} \to \mathbb{R}$ une fonction bornée. Alors il existe une fonction $h: \mathbb{N} \to \mathbb{N}$ strictement croissante telle que f(h(|x|)) a une limite quand $x \to \infty$ (on note $|x| = \sup\{n \in \mathbb{Z} : n \le x\}$).
- (4) Soit $(a_n)_{n\geq 0}$ une suite croissante. Alors $1/(1+a_n^2)$ est convergente. Vrai ou faux ? Si vrai, prouvez-le, sinon, donnez un contre-exemple.
- (5) Calculez $\lim_{n\to\infty} \int_0^1 x^n \sin(x) dx$, en justifiant rigoureusement.
- (6) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction convexe. Alors la fonction $g: \mathbb{R} \to \mathbb{R}$ définie par $g(x) = e^{f(x)}$ est convexe. Vrai ou faux? Si vrai, prouvez-le, sinon, donnez un contre-exemple.
- (7) Soit $f(x) = x \sin(x)$. Calculez $\lim_{x\to 0} \log(f \circ f \circ f)(x) / \log(x)$.
- (8) Soit $S = \{\beta \in \mathbb{R} : \sum_{n=0}^{\infty} 2^{\beta \ln n} \text{ converge}\}$. Alors S est un fermé. Vrai ou faux? Si vrai, prouvez-le, sinon, donnez un contre-exemple.
- (9) Soit $(f_n : \mathbb{R} \to \mathbb{R})_{n \geq 0}$ une suite de fonctions \mathcal{C}^1 qui converge ponctuellement vers une fonction \mathcal{C}^1 f, et telle que $f'_n(x)$ converge uniformément vers f'. Alors f_n converge uniformément vers f. Vrai ou faux? Si vrai, prouvez-le, sinon, donnez un contre-exemple.
- (10) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction périodique de période 1. Alors pour tout $N \in \mathbb{N} \setminus \{0\}$, la fonction f a au moins 2N zéros sur [0, N]. Vrai ou faux ? Si vrai, prouvez-le, sinon, donnez un contre-exemple.
- (11) Soit $\beta > 0$ et pour $n \in \mathbb{N} \setminus \{0\}$, soit $a_n = 1/n^{\beta}$. Alors $\sum_{n=1}^{\infty} |a_{n+1} a_n|$ converge. Vrai ou faux ? Si vrai, prouvez-le, sinon, donnez un contre-exemple.
- (12) Soit $(f_n)_{n\geq 0}$ une suite de fonctions $\mathbb{R}\to\mathbb{R}$ telles que $f'_{n+1}=f_n$ et $f_n(0)=0$ pour tout $n\geq 0$. Alors $f_n(x)\to 0$ pour tout $x\in\mathbb{R}$. Vrai ou faux ? Si vrai, prouvez-le, sinon, donnez un contre-exemple.
- (13) La suite S_N définie par $S_N = \sum_{k=1}^N \sum_{\ell=1}^N \frac{1}{(\ell^2 + k^2)}$ est convergente quand $N \to \infty$. Vrai ou faux ? Si vrai, prouvez-le, sinon, donnez un contre-exemple.
- (14) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction avec |f(x) f(y)| < |x y| pour tous $x, y \in \mathbb{R}$ avec $x \neq y$. Alors f a toujours un point fixe. Vrai ou faux? Si vrai, prouvez-le, sinon, donnez un contre-exemple.
- (15) Soit $(a_n)_{n\geq 0}$ une suite telle que pour tout $k\in\mathbb{N}\setminus\{0\}$, on ait $\sum_{n=0}^{\infty}\cos\left(\frac{2\pi n}{k}\right)a_n$ qui converge. Alors $\sum_{n=0}^{\infty}|a_n|$ qui converge. Vrai ou faux ? Si vrai, prouvez-le, sinon, donnez un contreexemple.