ANALYSE I EXAMEN

$23~\mathrm{JANVIER}~2019$

Nom e prénom:	SCIPER:
 pouvez pas faire référence aux exercices du cours: si le simplement. Vous avez 19 problèmes, chaque problème vaut 7 préponse, 6 points pour la preuve (si vrai) ou le continue. 	difficulté. Le dernier problème est difficile. cats vus en cours ou dans le polycopié. Néanmoins, vous ne un problème ressemble à un problème vu en exercices, refaites-points. Pour les questions vrai/faux, un point pour la bonne
(1) Si $f(x+h) = \mathcal{O}(h^n)$ pour tout $n \ge 1$ et tout $x \in$ justifiez, si faux, donnez un contre-exemple.	$\mathbb R$ quand $h \to 0$ alors f est $\mathcal C^\infty$ sur $\mathbb R$. Vrai ou faux? Si vrai,
(2) Si $f: \mathbb{R} \to \mathbb{R}$ et $g: \mathbb{R} \to \mathbb{R}$ sont convexes alors $f \circ g$ contre-exemple.	est convexe. Vrai ou faux? Si vrai, justifiez, si faux, donnez un

(3) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction

$$\lim_{n \to \infty} \frac{f\left(x + \frac{1}{n}\right) - f\left(x\right)}{1/n}$$

existe pour tout x. Alors f est dérivable. Vrai ou faux? Si vrai, justifiez, si faux, donnez un contre-exemple.

(4) Si $(a_n)_{n\geq 0}$ est une suite avec $|a_n|\leq 1/n$ et $a_na_{n+1}<0$ pour tout n alors $\sum_{n=0}^{\infty}a_n$ est convergente. Vrai ou faux? Si vrai, justifiez, si faux, donnez un contre-exemple.

(5) Si $(a_n)_{n\geq 0}$ est une suite avec $ a_{n+1} \leq a_n $ et $a_na_{n+1}<0$ pour tout n alors $\sum_{n=0}^{\infty}a_n$ est absolument convergent Vrai ou faux? Si vrai, justifiez, si faux, donnez un contre-exemple.							
(6)	Trouvez la primitive de $\ln^2(\sin(x))\cos(x)$.						
(0)	Frouvez la primitive de lii $(\sin(x))\cos(x)$.						

[7] Si $(a_n)_{n\geq 0}$ est une suite avec $ a_n <1$ et $\prod_{n=0}^{\infty}(1-a_n)=0$ est-il vrai que $\sum_{n=0}^{\infty} a_n =+\infty$? Si vrai, justifiez, si faux, donnez un contre-exemple.

(8) Si $f : \mathbb{R} \to \mathbb{R}$ est une fonction C^1 avec |f'| < 1 et avec $f([a,b]) \subset [a,b]$ prouvez précisément que f a un point fixe sur [a,b].

(9) Si $f: \mathbb{R} \to \mathbb{R}$ est une fonction continue, alors il existe toujours $x \in \mathbb{R}$ tel que

$$\int_{x-2}^{x+2} f(y) \, \mathrm{d}y = 4f(x).$$

Vrai ou faux? Si vrai, justifiez, si faux, donnez un contre-exemple.

(10) Si $f,g:\mathbb{R}\to\mathbb{R}$ sont des fonctions dérivables avec $g\left(0\right)=0$ et

$$\lim_{x \to 0} \frac{\sqrt[3]{f(x)}}{g(x)} = 1,$$

est-il vrai $f(x) = \mathcal{O}(x^3)$ quand $x \to 0$? Si vrai, justifiez, si faux, donnez un contre-exemple.

(11) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction \mathcal{C}^{∞}	qui est 2π -périodique.	Alors il existe une suite	de points $x_n \to \infty$ telle que
$f^{(n)}(x_n) \to 0$ quand $n \to \infty$. Vrai			

(12) Soit $f(x) = \sin^4(x) + \cos^2(x)$. Alors la fonction $G: \mathbb{R} \to \mathbb{R}$ définie par $G(x) = \int_0^x f(y) \, \mathrm{d}y$ est uniformément continue. Vrai ou faux? Si vrai, justifiez, si faux, donnez un contre-exemple.

(13) 3	Soit $f_n(x) = \min(x^n, (2-x)^n)$. Alors pour te	out $\epsilon > 0$, est-il vi	rai qu'il existe $N \ge 0$	tel que pour tou	t $n \ge N$ et
1	out $m \geq 0$, on a				

$$\sup_{x \in [0,2]} \left| f_n(x) - f_{n+m}(x) \right| \le \epsilon?$$

Justifiez votre réponse.

(14) Soit $\{a_n\}_{n\geq 0}$ une suite bornée des nombres réels telle que pour tout $m\in\mathbb{N}$ on a $\lim_{n\to\infty}(a_{n+m}-a_n)=0$, alors a_n est convergente. Vrai ou faux? Si vrai, justifiez, si faux, donnez un contre-exemple.

(15) Soit g une fonction continue positive. Alors la limite

$$\lim_{\alpha \to +\infty} \int_0^\alpha e^{-\int_0^x g(y) \mathrm{d}y} g\left(x\right) \mathrm{d}x$$

existe. Vrai ou faux? Si vrai, justifiez, si faux, donnez un contre-exemple.

(16) Soit f une fonction continue positive telle que la limite

$$\lim_{\alpha \to +\infty} \int_0^\alpha f(x) \, \mathrm{d}x$$

existe. Alors $\lim_{x\to+\infty}f\left(x\right)=0$. Vrai ou faux? Si vrai, justifiez, si faux, donnez un contre-exemple.

(17) Si f est une fonction telle qu'il existe une suite $(a_n)_{n\geq 0}$ et une constante C_N telle que pour tout N on a

$$\sum_{n=0}^{N} a_n x^n - C_N x^N \le f(x) \le \sum_{n=0}^{N} a_n x^n + C_N x^N.$$

Alors si sup $C_n < \infty$ f est analytique sur [-r, r] pour tout r < 1. Vrai ou faux? Si vrai, justifiez, si faux, donnez un contre-exemple.

(18) Prouvez, en utilisant des résultats vus en classe, que si $(f_n)_{n\geq 0}$ est une suite de fonctions continues avec $f_n(x)\geq 0$ pour tout $x\in [a,b]$ et telle que

$$F\left(x\right) = \sum_{n=0}^{\infty} f_n\left(x\right)$$

est continue, alors

$$\lim_{N \to \infty} \sum_{n=0}^{N} \int_{a}^{b} f_{n}(x) dx = \int_{a}^{b} F(x) dx.$$

Soyez très précis!

(19) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction telle que

$$\sup_{A \subset \mathbb{R}, \#(A) < +\infty} \sum_{x \in A} |f(x)| < +\infty$$

 $\sup_{A\subset\mathbb{R},\#(A)<+\infty}\sum_{x\in A}|f(x)|<+\infty$ et pour tout $n\in\mathbb{N}$ soit $a_n=\#(\{x:f(x)>\frac{1}{n}\}),$ où #(X) indique la cardinalité de l'ensemble X. Alors on a $\sum_n\frac{a_n}{n^2\log^2n}<+\infty.$

Vrai ou faux? Si vrai, justifiez, si faux, donnez un contre-exemple.