Exercice 1.

Montrer qu'une fonction $f:\mathbb{R}\to\mathbb{R},$ périodique et de classe $C^1,$ est Lipschitz.

Exercice 2.

Trouver une primitive du logarithme ln :]0, ∞ [$\rightarrow \mathbb{R}$.

Exercice 3.

Soit $f: \mathbb{R} \to \mathbb{R}$ de classe C^{∞} et $x \in \mathbb{R}$. Calculer :

$$\lim_{\substack{h \to 0 \\ \neq 0}} \frac{1}{h^4} \Big[f(x+2h) + f(x-2h) + 6f(x) - 4f(x+h) - 4f(x-h) \Big].$$

Exercice 4.

Soit (a_n) une suite de nombres réels. Montrer que si $\sum_{n=0}^{\infty} |a_{n+1} - a_n| < \infty$ alors $\lim_{n \to \infty} a_n$ existe.

Exercice 5.

Soient f, g des fonctions C^0 de [0, 1] dans \mathbb{R} , et une suite de fonctions f_n de [0, 1] dans \mathbb{R} qui sont C^1 . Montrer que si f'_n converge uniformément vers g et f_n converge vers f, alors f est C^1 et f' = g.

Indication : intégrer

Exercice 6.

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction deux fois dérivable. Montrer que si f(0) = f(1) = f(2) alors il existe un point $x \in \mathbb{R}$ tel que f''(x) = 0.

Exercice 7.

Etudier la convergence de

$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}.$$

Indication : comparer avec une intégrale.

Exercice 8.

(un peu plus difficile) Montrer que si $f: \mathbb{R} \to \mathbb{R}$ est analytique et vérifie f(1/n) = 0 pour tout entier n > 0 alors f = 0.

Exercice 9 (Question Vrai/Faux : si Vrai, justifier, si Faux, donner un contre-exemple).

Si $f: \mathbb{R} \to \mathbb{R}$ n'est pas continue en un point $x \in \mathbb{R}$, alors f^2 n'est pas continue en x.

Exercice 10 (Question Vrai/Faux : si Vrai, justifier, si Faux, donner un contre-exemple).

Si $f:\mathbb{R}\to\mathbb{R}$ est continue alors il existe une fonction C^1 $F:\mathbb{R}\to\mathbb{R}$ telle que F'=f.

Exercice 11 (Question Vrai/Faux : si Vrai, justifier, si Faux, donner un contre-exemple).

Soient $f_n:[0,1]\to\mathbb{R}$, une suite de fonctions C^∞ , et $f:[0,1]\to\mathbb{R}$. Si f_n converge vers f alors f est aussi C^∞ .

Exercice 12 (Question Vrai/Faux : si Vrai, justifier, si Faux, donner un contre-exemple).

Si $f: \mathbb{R} \to \mathbb{R}$ est continue et vérifie $f(x) \ge 1$, $\forall x \in \mathbb{R}$, alors il existe $\alpha < \beta$ dans \mathbb{R} tq $\int_{\alpha}^{\beta} f(x) dx = 10000$.

Exercice 13 (Question Vrai/Faux : si Vrai, justifier, si Faux, donner un contre-exemple).

Soit $\alpha \in]0,1]$. Si $f:[0,1] \to \mathbb{R}$ vérifie $|f(x)-f(y)| \le C|x-y|^{\alpha}, \forall x,y \in \mathbb{R}$ pour un réel C>0 alors f est uniformément continue.

Exercice 14 (Question Vrai/Faux : si Vrai, justifier, si Faux, donner un contre-exemple).

Soit (a_n) une suite de nombres réels. Si $\sum_{n=0}^{\infty} a_n$ converge alors $\sum_{n=0}^{\infty} a_n^2$ converge.

Exercice 15 (Question Vrai/Faux : si Vrai, justifier, si Faux, donner un contre-exemple).

(plus difficile) Soit (a_n) une suite de nombres réels. Si $\sum_{n=0}^{\infty} a_n$ converge alors $\sum_{n=0}^{\infty} a_n^3$ converge.

Exercice 16 (Question Vrai/Faux : si Vrai, justifier, si Faux, donner un contre-exemple).

Si $f: \mathbb{R} \to \mathbb{R}$ est continue et si f(x) = x + o(x) lorsque x tend vers 0, alors f est différentiable en 0.