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ABSTRACT

The risk and return trade-off, the cornerstone of modern asset pricing theory, is often of the wrong sign.

Our explanation is that high beta assets are more prone to speculative overpricing than low beta ones.

When investors disagree about the prospects of the stock market, high beta assets are more sensitive to

this aggregate disagreement and experience a greater divergence of opinion about their payoffs. If their

dividends’ variance is low enough, these assets experience speculative demand from optimistic investors.

Short-sales constraints then result in these high beta assets being over-priced. When aggregate disagree-

ment is low, the Security Market Line is upward sloping due to risk-sharing. When aggregate disagreement

is high, expected returns can actually decrease with beta, especially for stocks with low idiosyncratic vari-

ance. We confirm our theory using a measure of disagreement about stock market earnings.
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There is compelling evidence that high risk assets often deliver lower expected returns than low risk assets.

This is contrary to the risk and return trade-off at the heart of neoclassical asset pricing theory. This

high-risk, low-return puzzle literature, which dates back to Black (1972) and Black et al. (1972), shows

that low risk stocks, as measured by a stock’s co-movement with the stock market or Sharpe (1964)’s

Capital Asset Pricing Model (CAPM) beta, have significantly outperformed high risk stocks over the last

thirty years.1 Baker et al. (2011) show that the cumulative performance of stocks since January 1968

actually declines with beta. For instance, a dollar invested in a value-weighted portfolio of the lowest

quintile of beta stocks would have yielded $96.21 ($15.35 in real terms) at the end of December 2010.

A dollar invested in the highest quintile of beta stocks would have yielded around $26.39 ($4.21 in real

terms). Related, both Baker et al. (2011) and Frazzini and Pedersen (2010) point out that a strategy of

shorting high beta stocks and buying low beta stocks generates excess profits as large as famous excess

stock return predictability patterns such as the value-growth or price momentum effects.2

Black (1972) originally tried to reconcile a flat Security Market Line by relaxing one of the central

CAPM assumptions of borrowing at the risk-free rate. He showed that when there are borrowing con-

straints, risk tolerant investors desiring more portfolio volatility will demand high beta stocks since they

cannot simply lever up the tangency portfolio. However, borrowing constraints can only deliver a flatter

Security Market Line relative to the CAPM but not a downward sloping one. Investors would not bid up

high beta stock prices to the point of having lower returns than low beta stocks. Indeed, it is difficult to

get a downward sloping line even if one introduced noise traders as in Delong et al. (1990) or liquidity

shocks as in Campbell et al. (1993) since noise trader or fundamental risk in these models lead to higher

expected returns.3

In contrast to Black (1972), we provide a theory for this high-risk and low-return puzzle even when

investors can borrow at the risk-free rate. We show that relaxing instead the other CAPM assumptions

of homogeneous expectations and costless short-selling can deliver rich patterns in the Security Market

Line, including an inverted-U shape or even a downward sloping line. Our model starts from a CAPM

framework, in which firms’ cash flows follow a one factor model and there are a finite number of securities

so that markets are incomplete. We allow investors to disagree about the market or common factor of

firms’ cash flows and prohibit some investors from short-selling. Investors only disagree about the mean

of the common factor of cash flows and there are two groups of investors, buyers such as retail mutual
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funds who cannot short and arbitrageurs such as hedge funds who can short.

There is substantial evidence in support of both of these assumptions. First, there is time-varying dis-

agreement among professional forecasters’ and households’ expectations about many macroeconomic state

variables such as market earnings, industrial production growth and inflation (Cukierman and Wachtel

(1979), Kandel and Pearson (1995), Mankiw et al. (2004), Lamont (2002)). Such aggregate disagreement

might emanate from many sources including heterogeneous priors or cognitive biases like overconfidence.4

Second, short-sales constraints bind for some investors due to institutional reasons as opposed to the phys-

ical cost of shorting.5 For instance, many investors in the stock market such as retail mutual funds, which

in 2010 have 20 trillion dollars of assets under management, are prohibited by charter from shorting either

directly (Almazan et al. (2004)) or indirectly through the use of derivatives (Koski and Pontiff (1999)).

Only a smaller subset of investors, such as hedge funds with 1.8 trillion dollars in asset management, can

and does short.

Our main result is that high beta assets are over-priced compared to low beta ones when disagreement

about the common factor of firms’ cash flows is high. If investors disagree about the mean of the common

factor, then their forecasts of the payoffs of high beta stocks will naturally diverge more than their forecasts

of low beta ones. In other words, beta amplifies disagreement about the macro-economy. Because of short-

sales constraints, high beta stocks, which are more sensitive to aggregate disagreement than low beta ones,

are only held in equilibrium by optimists as pessimists are sidelined. This greater divergence of opinion

creates overpricing of high beta stocks compared to low beta ones (Miller (1977) and Chen et al. (2002)).6

Arbitrageurs attempt to correct this mispricing but their limited risk-bearing capacity results only in

limited shorting, leading to equilibrium overpricing.7

That more disagreement on high beta stocks lead to overpricing of these stocks is far from obvious in

an equilibrium model like ours. Optimistic investors can achieve a large exposure to the common factor by

buying high beta stocks or levering up low beta ones. If high beta stocks are overpriced, optimistic investors

should favor the levering up of low beta assets, which could potentially undo the initial mispricing. The

key reason why this is not the case in our model is that when markets are incomplete (which is implicit

in all theories of limits of arbitrage (as in Delong et al. (1990) or Shleifer and Vishny (1997)) and most

modern asset pricing models (Merton (1987))), idiosyncratic risk matters for investors’ portfolios. In our

context, while levering up low beta stocks increases the exposure to the common factor, it also magnifies
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the idiosyncratic risk that investors have to bear. This role of idiosyncratic volatility as a limit of arbitrage

is motivated by a number of empirical papers that show that idiosyncratic risk is the biggest impediment to

arbitrage (Pontiff (1996), Wurgler and Zhuravskaya (2002)). It leads, in equilibrium, to a situation where

levering up low beta stocks ends up being less efficient than buying high beta stocks when speculating on

the common factor of firms’ cash flows. In other words, higher beta assets are naturally more speculative.

Our model yields the following key testable implications. When macro-disagreement is low, all investors

are long and short-sales constraints do not bind. The traditional risk-sharing motive leads high beta assets

to attract a lower price or higher expected return. For high enough levels of aggregate disagreement, the

relationship between risk and return takes on an inverted U-shape. For assets with a beta below a certain

cut-off, expected returns are increasing in beta as there is little disagreement about these stock’s cash

flows and therefore short-selling constraints do not bind in equilibrium.

But for assets with a beta above an equilibrium cut-off, disagreement about the dividend becomes

sufficiently large that the pessimist investors are sidelined. This speculative overpricing effect can dominate

the risk-sharing effect and the expected returns of high beta assets can actually be lower than those of

low beta ones. As disagreement increases, the cut-off level for beta below which all investors are long falls

and the fraction of assets experiencing binding short-sales constraints increases.8

We test these predictions using a monthly time-series of disagreement about market earnings. Dis-

agreement about a stock’s cash-flow is simply measured by the standard deviation of analysts’ forecasts

of the long-term growth of Earnings Per Share (EPS), as in Diether et al. (2002). The aggregate dis-

agreement measure is a beta-weighted average of the stock-level disagreement measure for all stocks in

our sample, similar in spirit to Yu (2010). The weighting by beta in our proxy for aggregate disagreement

is suggested by our theory. After all, stocks with very low beta have by definition almost no sensitivity to

aggregate disagreement, and their disagreement should mostly reflect idiosyncratic disagreement. Aggre-

gate disagreement can be high during both down-markets, like the recessions of 1981-1982 and 2007-2008,

and up-markets, like the dot-com boom of the late nineties (Figure 1). Panel (c) of Figure 6 shows the

12-months excess returns on 20 β-sorted porftolios (see Section II.B for details on the construction of

these portfolios). In months with low aggregate disagreement (defined as the bottom quartile of the ag-

gregate disagreement distribution and denoted by blue dots), we that that returns are in fact increasing

with beta. In months with high aggregate disagreement however (defined as the top quartile of the dis-
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agreement distribution and denoted by red dots), the risk-return relationship has an inverted-U shape.

In these months, the two top and bottom portfolios have average excess return net of the risk-free rate

of around 0%, while the portfolios around the median portfolio have average excess returns of around

8%. This inverted U-shape relationship is formally estimated in the context of a standard Fama-MacBeth

analysis where the excess return/beta relationship is shown to be strictly more concave when aggregate

disagreement is large.9

[ Insert Figure 1 here ]

Our baseline analysis assumes that stocks’ cash-flow process is homoskedastic. When we allow for

heteroskedasticity, our main asset pricing equation is slightly modified. Intuitively, a large idiosyncratic

variance makes optimist investors reluctant to demand too much of a stock. Thus, a stock with a large

cash-flow beta – and therefore whose expected cash-flow is high from the optimists’ point of view –

may nonetheless have little demand from the optimists if the stock has high idiosyncratic variance. In

equilibrium, this low demand from optimist will drive down the price and make pessimists long this asset.

As a result, such a stock may not experience the same speculative over-pricing as a stock with a similar

cash-flow beta but a lower idiosyncratic variance. In other words, stocks experience overpricing only when

the ratio of their cash-flow beta to idiosyncratic variance is high enough. Below a certain cutoff in this

ratio, stocks are priced as in the CAPM and the partial Security Market Line (the relationship between

expected returns and β for stocks below this cutoff) is upward sloping and independent of aggregate

disagreement. Above the cutoff, the partial Security Market Line has a slope that strictly decreases with

aggregate disagreement. We confirm this additional prediction in the data.

Our findings are consistent with Diether et al. (2002) and Yu (2010), who find that dispersion of

earnings forecasts predicts low returns in the cross-section and for the market return in the time-series

respectively, as predicted in models with disagreement and short-sales constraints. Our particular focus

is on the theory and the empirics of the Security Market Line as a function of aggregate disagreement.

Importantly, we show below that the patterns observed in the data is not simply a function of high beta

stocks performing badly during down markets nor is it a function of high disagreement stocks under-

performing.

Finally, in an overlapping-generations (OLG) extension of our static model, we show that these pre-

dictions also hold in a dynamic setting where disagreement follows a two-state markov chain. Investors
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anticipate that high beta assets are more likely to experience binding short-sales constraints in the future

and hence have a potentially higher resale price than low beta ones relative to fundamentals (Harrison

and Kreps (1978), Morris (1996), Scheinkman and Xiong (2003) and Hong et al. (2006)). Since disagree-

ment is persistent, this pushes up the price of high beta assets in both the low and high disagreement

states. At the same time, since the price of high beta assets vary more with aggregate disagreement, these

stocks carry an extra risk-premium. We use this dynamic model to show that a basic simulation of the

model can yield economically significant flattenings of the Security Market Line using reasonable levels of

disagreement and risk-aversion among investors.

Our paper proceeds as follows. We present the model in Section I. We describe the data we use in our

empirical analysis in Section II. We present the empirical analysis in Section III. We conclude in Section

IV. All proofs are in Appendix A.

I. Model

A. Static Setting

We consider an economy populated with a continuum of investors of mass 1. There are two periods,

t = 0, 1. There are N risky assets and the risk-free rate is exogenously set at r. Risky asset i delivers a

dividend d̃i at date 1, which is given by:

∀i ∈ {1, . . . , N}, d̃i = d+ biz̃ + ε̃i.

The common factor in stock i’s dividend is z̃, with E[z̃] = 0 and Var[z̃] = σ2
z . The idiosyncratic component

in stock i’s dividend is ε̃i, with E[ε̃i] = 0 and Var[ε̃i] = σ2
ε . By definition, for all i ∈ [1, N ], Cov (z̃, ε̃i) = 0.

bi is the cash-flow beta of asset i and is assumed to be strictly positive. Each asset i is in supply si = 1
N

and we assume w.l.o.g. that:10

0 < b1 < b2 < · · · < bN .

Assets in the economy are indexed by their cash-flow betas, which are increasing in i. The share-weighted

average b in the economy is set to 1 (
∑N

i=1
bi
N = 1).

Investors are divided into two groups. A fraction α of them hold heterogenous beliefs and cannot
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short. We call these buyers mutual funds (MF), who are in practice prohibited from shorting by charter.

These investors are divided in two groups of mass 1
2 , A and B, who disagree about the mean value of the

aggregate shock z̃. Group A believes that EA[z̃] = λ while group B believes that EB[z̃] = −λ. We assume

w.l.o.g. that λ > 0 so that investors in group A are the optimists and investors in group B the pessimists.

A fraction 1−α of investors hold homogeneous and correct beliefs and are not subject to the short-sales

constraint. We index these investors by a (for "arbitrageurs"). For concreteness, one might interpret these

buyers as hedge funds (HF), who can generally short at little cost. That these investors have homogenous

beliefs is simply assumed for expositional convenience. Heterogeneous priors for unconstrained investors

wash out in the aggregate and have thus no impact on equilibrium asset prices in our model.

Investors maximize their date-1 wealth and have mean-variance preferences:

U(W̃ k) = Ek[W̃ k]− 1

2γ
V ar(W̃ k)

where k ∈ {a,A,B} and γ is the investors’ risk tolerance. Investors in group A or B maximize under the

constraint that their holding of stocks have to be greater than 0.

B. Equilibrium

The following theorem characterizes the equilibrium.

Theorem 1. Let θ =
α
2

1−α
2
and define (ui)i∈[0,N+1] such that uN+1 = 0,

ui = 1
γNbi

(
σ2
ε + σ2

z

(∑
j<i b

2
j

))
+ σ2

z
γ

(∑
j≥i

bj
N

)
for i ∈ [1, N ] and u0 = ∞. u is a strictly decreasing

sequence. Let ī = min {k ∈ [0, N + 1] | λ > uk}. There exists a unique equilibrium, in which asset prices

are given by:

Pi(1 + r) =


d− 1

γ

(
biσ

2
z +

σ2
ε

N

)
for i < ī

d− 1

γ

(
biσ

2
z +

σ2
ε

N

)
+
θ

γ

(
biσ

2
zω(λ)− σ2

ε

N

)
︸ ︷︷ ︸
πi=speculative premium

for i ≥ ī , (1)

where ω(λ) =
λγ−σ

2
z
N (

∑
i≥ī bi)

σ2
z

(
1+σ2

z

(∑
i<ī

b2
i
σ2
ε

)) .

Proof. See Appendix A

The main intuition underlying the equilibrium is that there is more disagreement among investors about

the expected dividends of high bi assets relative to low bi assets. Above a certain level of bi (bi ≥ bī),
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investors sufficiently disagree that the pessimists, that is, investors in group B, would like to optimally

short these stocks. However, this is impossible because of the short-sales constraint. These high b stocks

thus experience a speculative premium since their price reflects disproportionately the belief of the opti-

mists, that is, investors in group A. As aggregate disagreement grows, the cash flow beta of the marginal

asset — the asset above which group B investors are sidelined — decreases and there is a larger fraction

of assets experiencing overpricing.11

We can derive a number of comparative static results regarding this equilibrium. The first ones relates

to overpricing. When short-sales constraints are binding, that is, for assets i ≥ ī, the difference between

the equilibrium price and the price that would prevail in the absence of short-sales constraints (i.e., when

MFs can short without restriction or when α = 0) is given by:

πi =
θ

γ

(
biσ

2
zω(λ)− σ2

ε

N

)
. (2)

This term, which we call the speculative premium, captures the degree of overpricing due to the short-

sales constraints. The following corollary explores how this speculative premium varies with aggregate

disagreement, cash-flow betas, and the fraction of short-sales constrained agents.

Corollary 1. Assets with high cash-flow betas, that is, i ≥ ī, are over-priced (relative to the benchmark

with no short-sales constraints or when α = 0) and the amount of overpricing, defined as the difference

between the price and the benchmark price in the absence of short-sales constraints, is increasing with

disagreement λ, with cash-flow betas bi and with the fraction of short-sales constrained investors α. Fur-

thermore, an increase in aggregate disagreement λ leads to a larger increase in mispricing for assets with

larger cash flow betas.

Proof. See Appendix B

The second comparative static we consider relates to the holdings observed in equilibrium. Remember

that HFs (i.e. investors in group a) are not restricted in their ability to short. Intuitively, HFs short assets

with large mispricing, that is, high b assets. As aggregate disagreement increases, mispricing increases,

so that HFs end up shorting more. Since an increase in aggregate disagreement leads to a larger relative

increase in mispricing for higher b stocks, the corresponding increase in shorting is also larger for high b

stocks. In other words, there is a weakly increasing relationship between shorting by HFs and b. Provided

7
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that λ is large enough, this relationship becomes strictly steeper as aggregate disagreement increases. We

summarize these comparative statics in the following corollary:

Corollary 2. Group A investors are long all assets. Group B investors are long assets i < ī−1 and have

0 holdings of assets i ≥ ī. There exists λ̂ > 0 such that provided that λ > λ̂, there exists ĩ ∈ [̄i,N ] such

that (1) group a investors short high cash-flow beta assets, that is, assets i ≥ ĩ (2) the $ amount of stocks

being shorted in equilibrium increases with aggregate disagreement λ and (3) the sensitivity of shorting to

aggregate disagreement is higher for high cash-flow beta assets.

Proof. See Appendix C

C. Beta and Expected Return

We now restate the equilibrium in terms of expected excess returns and relate them to the familiar

market β from the CAPM. We note r̃ei the excess return per share for asset i and R̃em the excess return

per share for the market portfolio. The market portfolio is simply defined as the portfolio of all assets in

the market. The value of the market portfolio is Pm =
∑N

j=1 sjPj =
∑N

j=1
Pj
N since we have normalized

the supply of stocks to 1
N . Then, by definition:

R̃ei = d+ biz̃ + ε̃i − (1 + r)Pi and R̃em =
N∑

i=1

siR̃
e
i =

N∑

i=1

1

N
R̃ei = d+ z̃ +

N∑

i=1

ε̃i
N
− (1 + r)Pm.

Define βi =
Cov(R̃ei ,R̃em)
V ar(R̃em)

=
biσ

2
z+

σ2
ε
N

σ2
z+

σ2
ε
N

to be the stock market beta of stock i. By definition, the expected

excess return per share on stock i is simply given by:

E[R̃ei ] = d− (1 + r)Pi.

Using Theorem 1, we can express this expected excess return per share on stock i as:12

E[R̃ei ] =





βi
σ2
z + σ2

ε
N

γ
for i < ī

βi
σ2
z + σ2

ε
N

γ
(1− θω(λ)) + θ

σ2
ε

γN
(1 + ω(λ)) for i ≥ ī

, (3)

This representation follows directly from Theorem 1: we simply express the price of asset i as a function

8

Electronic copy available at: https://ssrn.com/abstract=1967462



of the market beta of asset i, βi. For α = 0 (so that θ = 0), investors have homogenous beliefs so that λ

does not affect the expected returns of the assets. In fact, when α = 0, there are no binding short-sales

constraints, so that ī = N + 1 and we can simply rewrite for all i ∈ [1, N ]: E[R̃ei ] = βiE[R̃em], that is, the

standard CAPM formula. However, when a fraction α > 0 of investors are short-sales constrained and

aggregate disagreement is large enough, ī ≤ N and the expected return per share for assets i ≥ ī depend

on aggregate disagreement λ.

More precisely, the Security Market Line is then piecewise linear. For low beta assets (βi < βī),

expected excess returns are solely driven by risk-sharing: higher β assets are more exposed to market

risk and thus command a higher expected return. When β crosses a certain threshold (β ≥ βī), however,

expected excess returns are also driven by speculation, in the sense that pessimists are sidelined from

these high beta stocks: over this part of the Security Market Line, higher beta assets, which are more

exposed to aggregate disagreement, command a larger speculative premium and thus receive smaller

expected returns than what they would absent disagreement. Note that provided that λ is large enough,

the Security Market Line can even be downward sloping over the interval [βī, βN ], that is, for speculative

assets.

We illustrate the role of aggregate disagreement on the shape of the Security Market Line in Figure

2: the Security Market Line is plotted for three possible levels of λ, λ0 < λ1 < λ2. The Security Market

Line is simply the 45 degree line when λ = λ0 = 0 as seen in the top panel of Figure 2(a)). λ1 is assumed

to be large enough that a strictly positive fraction of assets experience binding short-sales constraints and

hence speculative mispricing (assets above ī): expected returns are increasing with beta but at a lower

pace for assets above the endogenous marginal asset ī (2(b)). When λ = λ2 > λ1 (Figure 2(c)), the slope

of the Security Market Line for assets i ≥ ī is negative, that is, the Security Market Line has an inverted-U

shape.

[ Insert Figure 2 here ]

In our empirical analysis below, we approach this relationship between expected excess returns and β

by looking at the concavity of the Security Market Line and how this concavity is related to our empiricaly

proxy for aggregate disagreement. More precisely, we estimate every month a cross-sectional regression of

realized excess returns of 20 β-sorted portfolios on the portfolio β and the portfolio β2. The time-series of

the coefficient estimate on β2 represents a time-series of returns which essentially goes long the low and
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high beta portfolios and short the portfolios around the median beta portfolio. Essentially, the Security

Market Line described in equation 3 predicts that this square portfolio should experience lower return

when aggregate disagreement is high – or in other words that the Security Market Line should be more

concave when aggregate disagreement is high. This is our first main empirical prediction.

Prediction 1. In low disagreement months, the Security Market Line is upward sloping. In high disagree-

ment months, the Security Market Line has a kink-shape: its slope is strictly positive for low β assets,

but strictly lower (and potentially negative) for high β assets. The Security Market Line should be more

concave following months with high aggregate disagreement; equivalently, a portfolio long low and high

beta assets and short medium beta assets should experience a lower performance following months of high

aggregate disagreement.

A consequence of the previous analysis is that the slope of the Security Market Line should also

decrease following a month of high aggregate disagreement. However, this is a weaker prediction of the

model since it does not exploit the specificity of our model, namely the kink in the security market line,

which, as we will see in Section III is an important feature of the data.

Corollary 3. Let µ̂ be the coefficient estimate of a cross-sectional regression of realized returns
(
R̃ei

)
i∈[1,N ]

on (βi)i∈[1,N ] and a constant. The coefficient µ̂ decreases with aggregate disagreement λ and with the

fraction of short-sales constrained agents in the economy α. Furthermore, the negative effect of aggregate

disagreement λ on µ̂ is larger when there are fewer arbitrageurs in the economy (i.e., when α increases).

Proof. See Appendix E

D. Discussion of Assumptions

Our theory relies on two fundamental ingredients, disagreement and short-sales constraint. Both are

important. In the absence of disagreement, all investors share the same portfolio and since there is a

strictly positive supply of assets, this portfolio is long only. Thus, the short-sales constraint is irrelevant

– it never binds – and the standard CAPM results apply. In the absence of short-sales constraints, the

disagreement of group A and group B investors washes out in the market clearing condition and prices

simply reflect the average belief, which we have assumed to be correct.
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The model also relies on important simplifying assumptions. First of them is that, in our framework,

investors disagree only on the expectation of the aggregate factor, z̃. A more general setting would

allow investors to also disagree on the idiosyncratic component of stocks dividend ε̃i. If the idiosyncratic

disagreement on a stock is not systematically related to this stock’s cash-flow beta, then our analysis is left

unchanged since whatever mispricing is created by idiosyncratic disagreement, it does not affect the shape

of the Security Market Line in a systematic fashion. If idiosyncratic disagreement is positively correlated

with stocks’ cash-flow beta, then the impact of aggregate disagreement on the Security Market Line

becomes even stronger. This is because there are now two sources of overpricing linked systematically

with bi: one coming from aggregate disagreement, the other coming from this additional idiosyncratic

disagreement.

As we show in Section II.C below, the overall disagreement on the earnings growth of high beta stocks

is much larger than the disagreement on low beta stocks, even in months with low aggregate disagreement.

This suggests that, idiosyncratic disagreement is in fact larger for high beta stocks. We also believe that

this conforms to standard intuition on the characteristics of high and low beta stocks.

The second key assumption in the model is that investors only disagree on the first moment of the

aggregate factor z̃ and not on the second moment σ2
z . From a theoretical viewpoint, this is not so different.

In the same way that β scales disagreement regarding z̄, β would scale disagreement about σ2
z . In other

words, label the group that underestimates σ2
z as the optimists and the group that overestimate σ2

z as the

pessimists. Optimists are more optimistic about the utility derived from holding a high β asset than a

low β asset and symmetrically, the pessimists are more pessimistic about the utility derived from holding

a high β asset than a low β asset. Again, high β assets are more sensitive to disagreement about the

variance of the aggregate factor σ2
z than low β assets. As in our model, this would naturally lead to high

β stocks being overpriced when this disagreement about σ2
z is large. However, while empirical proxies for

disagreement about the mean of the aggregate factor can be constructed, it is not clear how one would

proxy for disagreement about its variance.

The third key assumption imposed in the model is that the dividend process is homoskedastic. In

the next section, we relax this assumption and allow the dividend process of different assets to have

heterogeneous levels of idiosyncratic volatility.

11
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E. Heteroskedastic Idiosyncratic Variance

Our results in Theorem 1 in the static case have been derived under the assumption that the idiosyn-

cratic shocks to the dividend process were homoskedastic, that is, ∀i ∈ [1, N ], σ2
i = σ2

ε . This assumption

is easily relaxed. Once dividends can be heteroskedastic, assets need to be ranked in ascending order of

bi
σ2
i
, which is equivalent to ranking them in ascending order of βi

σ2
i
. In Appendix A, we show that the unique

equilibrium then features a marginal asset ī, such that:

E[R̃ei ] =





βi
σ2
z +

∑N
j=1

σ2
j

N2

γ
for

βi
σ2
i

<
βī
σ2
ī

βi
σ2
z +

∑N
j=1

σ2
j

N2

γ
(1− θω(λ)) + θ

σ2
i

γN
(1 + ω(λ)) for

βi
σ2
i

≥ βī
σ2
ī

, (4)

Intuitively, consider a stock with a high cash-flow beta. Relative to pessimists, optimist investors

believe this stock is likely to have a high dividend. If the stock has a low idiosyncratic variance (σ2
i ), this

will lead to a high demand from optimists for this stock. In equilibrium, this will drive out the pessimists

from the stock and lead to speculative overpricing. However, if the stock has a high idiosyncratic variance,

optimists will be reluctant to demand large quantities of this stock, despite their optimistic valuation. As

a result, the pessimists may be required to be long the stock in equilibrium, so that the stock will be fairly

priced. Thus, the equilibrium features a cutoff in the ratio of cash-flow beta to idiosyncratic variance.

In particular, the pricing formula in Equation (4) says that for stocks i with βi/σ
2
i below the cut-

off βī/σ
2
ī
(i.e. what we define as non-speculative stocks), the slope of the partial Security Market

Line (the relationship between expected returns and β for assets below the cutoff) does not depend

on aggregate disagreement. For stocks i with a ratio βi/σ
2
i above this cut-off (i.e. what we define

as speculative stocks), the partial Security Market Line is still linear in β but its slope is strictly

decreasing with aggregate disagreement. The asset pricing equation (4) also predicts that for these

mispriced assets, idiosyncratic variance is priced and that the price of idiosyncratic risk increases with

aggregate disagreement. This is related to the previous intuition: all else equal, an asset with a high

idiosyncratic variance will receive a smaller demand by optimists, which in equilibrium will drive down its

price and drive up it expected return. This leads to our second main empirical prediction of the paper.

Prediction 2. Define speculative assets as assets with a high ratio of βi/σ2
i . Then, the slope of the
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relationship between expected returns and β for these assets decreases strictly with aggregate disagreement.

Conversely, for non-speculative assets – assets with a low ratio of βi/σ2
i – the relationship between expected

returns and β is independent of aggregate disagreement.

F. Infinite Number of Assets

We analyze the case where markets become complete and N goes to infinity. To simplify the discussion,

we assume that whatever N , the number of assets, assets in the cross-section always have cash-flow

betas that are bounded in [b, b̄]. We adapt our previous notation to define bNi the cash-flow beta of

asset i when the cross-section has N assets, with i ≤ N . Our assumption is that for all N ∈ N and

i ≤ N, 0 < b < bNi < b̄ <∞. With this assumption, we show that in the limit case where N →∞, asset

returns always admit a linear CAPM representation. In particular, the slope of the security market line

is independent of λ as long as λ ≤ σ2
z
γ and is strictly decreasing with λ when λ > σ2

z
γ .

Since uNi = 1
γNbNi

(
σ2
ε + σ2

z

(∑
j<i (bNj )2

))
+ σ2

z
γ

(∑
j≥i

bNj
N

)
and the bi are bounded, it is direct to

see that when N → ∞: uN1 → σ2
z
γ and uNN → lσ

2
z
γ , where l = limN→∞

∑
j<N

(bNj )2

NbNN
and l < 1 since for all

j < N , bNj < bNN .

Our first result is that if λ is small enough (i.e. λγ < lσ2
z = γ limuNN ), then at the limit N → ∞, no

asset will experience binding short-sales constraints, so that asset returns will be independent of λ and

the standard CAPM formula will apply: E[R̃ei ] = βiE[R̃em], with E[R̃em] independent of λ.

Our second result is that, provided that λ is large enough (λγ > σ2
z = γ limuN1 ), then at the limit, all

assets will experience binding short-sales constraints. In this case, expected returns at the limit are given

by:

E[R̃ei ] = βi

(
(1 + θ)

σ2
z

γ
− λθ

)
= βiE[R̃em(λ)].

The Security Market Line is linear as in the previous case, but its slope is now strictly decreasing with

aggregate disagreement λ. In particular, if λγ > 1+θ
θ σ2

z , then the Security Market Line is strictly decreas-

ing.

The final case occurs when σ2
z > λγ > lσ2

z . For any finite i , we know that limuNi = σ2
z
γ . Thus, the

marginal asset has to be in the limit such that lim īN = ∞. But then, we know that ω(λ) → 0, so that

the speculative premium at the limit is also 0. Thus, at the limit, asset returns will be independent of λ

and the standard CAPM formula will again apply: E[R̃ei ] = βiE[R̃em], with E[R̃em] independent of λ.
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G. Dynamics

G1. Set-up

We consider now a dynamic extension of the previous model, where we also allow for heteroskedasticity

in dividend shocks. This extension is done in the context of an overlapping generation framework. Time

is infinite, t = 0, 1, . . .∞. Each period t, a new generation of investors of mass 1 is born and invest in

the stock market to consume the proceeds at date t + 1. Thus at date t, the new generation is buying

assets from the current old generation (born at date t− 1), which has to sell its entire portfolio in order

to consume. Each generation is composed of 2 groups of investors: arbitrageurs, or Hedge Funds, in

proportion 1− α, and Mutual Funds in proportion α. Investors have mean-variance preferences with risk

tolerance parameter γ. There are N assets, whose dividend process is given by:

d̃it = d+ biz̃t + ε̃it,

where E[z̃] = 0, Var[z̃] = σ2
z , E[ε̃i] = 0, Var[ε̃i] = σ2

i and 1
N

∑N
i=1 bi = 1. We normalize the assets to be

ranked in ascending order of bi
σ2
i
:

0 <
b1
σ2

1

<
b2
σ2

2

< · · · < bN
σ2
N

The timeline of the model appears on Figure 3. Mutual funds born at date t hold heterogeneous beliefs

about the expected value of z̃t+1. Specifically, there are two groups of mutual funds: investors in group

A – the optimist MFs – hold expectations about z̃t+1 such that EAt [z̃t+1] = λ̃t and investors in group B –

the pessimist MFs – hold expectations about z̃t+1 such that EB[z̃t+1] = −λ̃t.13 Finally, we assume that

λ̃t ∈ {0, λ > 0} is a two-state Markov process with persistence ρ ∈]1/2, 1[.

[ Insert Figure 3 here ]

Call P it (λ̃) the price of asset i at date t when realized aggregate disagreement is λ̃t ∈ {0, λ} and define

∆P it = P it (λ) − P it (0). Let µki (λ̃t) be the number of shares of asset i purchased by investors in group k

when realized aggregate disagreement is λ̃t ∈ {0, λ} and let λkt be the realized belief at date t for investors

in group k ∈ {a, A, B}.14 We first compute the date-t+1 wealth of investors in group k ∈ {a, A, B}, born
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at date t and with portfolio holdings
(
µki (λ̃t)

)
i∈[1,N ]

:

W̃ k
t+1 =


∑

i≤N
µki (λ̃t)bi


 z̃t+1 +

∑

i≤N
µki (λ̃t)ε̃

i
t+1 +

∑

i≤N
µki (λ̃t)

(
d+ P it+1(λ̃t+1)− (1 + r)P it (λt)

)

Thus, for investors in group k, their own expected wealth at date t + 1, and its associated variance are

given by:





Ek[W̃ k] =


∑

i≤N
µki (λ̃t)bi


λkt +

∑

i≤N
µki (λ̃t)

(
d+ E[P it+1(λ̃t+1)|λ̃t]− (1 + r)P it (λt)

)

V ar[W̃ k] =


∑

i≤N
µki (λ̃t)bi




2

σ2
z +

∑

i≤N
(µki (λ̃t))

2σ2
i + ρ(1− ρ)


∑

i≤N
µki (λ̃t)

(
∆P it+1

)



2

Relative to the static model, there are two notable changes. First, investors value the resale price of

their holding at date 1 (the E[P it+1(λ̃t+1)|λ̃t] term in expected wealth). Second, investors now bear the

corresponding risk that the resale prices move with aggregate disagreement λ̃t (this is, in our binomial

setting, the ρ(1− ρ)
(∑

i≤N µ
k
i (λ̃t)

(
∆P it+1

))2
term in wealth variance).

G2. Equilibrium

The following Theorem characterizes the equilibrium of this economy:

Theorem 2. Define (vi)i∈[0,N+1] such that vN+1 = 0, vi = σ2
z
N

(∑
k≥i bk

)
+ 1

N
σ2
i
bi

(
1 + σ2

z

∑
k<i

b2k
σ2
k

)
for

i ∈ [1, N ] and v0 = ∞. v is a strictly decreasing sequence. Let ī = min {k ∈ [0, N + 1] | λ > vk}. There

exists a unique equilibrium. In this equilibrium, short-sales constraints bind only for the group of pessimist

investors (i.e., group B), in the high disagreement states (λ̃t = λ > 0) and for assets i ≥ ī. The speculative

premium on these assets is given by:

πj =
θ

γ


bj

λγ − σ2
z
N

∑
k≥ī bk

1 + σ2
z

(∑
i<ī

b2i
σ2
i

) −
σ2
j

N



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Finally, define

Γ? =
−(1 + r) + (2ρ− 1) +

√
((1 + r)− (2ρ− 1))2 + 4

N
θρ(1−ρ)

γ

∑
j≥ī π

j

2 θρ(1−ρ)
γ

> 0

In equilibrium, asset returns are given by:



E[Rj(λ)] = E[Rj(0)] =
1

γ

(
bjσ

2
z +

σ2
i

N

)
for j < ī

E[Rj(0)] =
1

γ

(
bjσ

2
z +

σ2
i

N
+ ρ(1− ρ)

Γ?

(1 + r)− (2ρ− 1) + θρ(1−ρ)
γ

Γ?
πj
)

for j ≥ ī

E[Rj(λ)] =
1

γ

(
bjσ

2
z +

σ2
i

N
+ ρ(1− ρ)

Γ?

(1 + r)− (2ρ− 1) + θρ(1−ρ)
γ

Γ?
πj
)
− 1 + r − (2ρ− 1)

(1 + r)− (2ρ− 1) + θρ(1−ρ)
γ

Γ?
πj for j ≥ ī

Proof. See Appendix F.

Our characterization of how disagreement affects the Security Market Line in our static model still

carries over to this dynamic model with heteroskedasticity. Low b/σ2 assets (i.e., j < ī) are never shorted

since there is not enough disagreement among investors to make the pessimist investors willing to go short,

even in the high disagreement states. Thus, the price of these assets is the same in both states of nature

and similar to the standard CAPM case. In the high aggregate disagreement state (λ̃ = λ > 0), pessimist

investors, that is, investors in group B, want to short high b assets to the extent that these assets are not

too risky (i.e., assets j such that bj
σ2
j
≥ bī

σ2
ī

), but are prevented from doing so by the short-sale constraint.15

This leads to overpricing of these assets relative to the benchmark without disagreement.

A consequence of the previous analysis is that the price of assets j ≥ ī depends on the realiza-

tion of aggregate disagreement. There is an extra source of risk embedded in these assets: their re-

sale price is more exposed to aggregate disagreement. These assets are thus riskier and command

an extra risk premium relative to lower b assets. This extra risk premium takes the following form:

1
γρ(1 − ρ) Γ?

(1+r)−(2ρ−1)+
θρ(1−ρ)

γ
Γ?
πj . Relative to a benchmark without disagreement (and where expected

returns are always equal to 1
γ

(
bjσ

2
z +

σ2
i
N

)
), high b assets have higher expected returns in low disagreement

states (because of the extra risk-premium). In high disagreement states, holding σ2 constant, the expected

returns of high b assets are strictly lower than in low disagreement states, since the large disagreement

about next-period dividends lead to overpricing. Thus, in high disagreement states, the slope of the re-

lationship between expected returns and cash-flow betas holding σ2 constant is smaller for assets with a
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high ratio of cash-flow beta to idiosyncratic variance (i.e. assets j ≥ ī) than assets j <≥> ī. Whether

the expected returns of high b assets are lower or higher than in the benchmark without disagreement

depends on the relative size of the extra risk premium and the speculative premium. In the data, however,

aggregate disagreement is persistent, that is, ρ is close to 1. A first-order Taylor expansion of Γ? around

ρ = 1 gives that Γ? ≈ ∑j≥ī
πj
N so that in the vicinity of ρ = 1, E[Rj(λ)] < 1

γ

(
bjσ

2
z +

σ2
j

N

)
. Intuitively,

when aggregate disagreement is persistent, the resale price risk is very limited, since there is only a small

probability that the price of high b assets will change next period. Thus, the speculative premium term

dominates and expected returns of high b assets are lower than under the no-disagreement benchmark.

We summarize these findings in the following proposition:

Corollary 4.

(i) In low disagreement states (λ̃ = 0), conditional on σ2
i , expected returns ERej are strictly increasing with

cash-flow beta bj. Because of resale price risk, the slope of the return/cash-flow beta relationship is higher

for assets j ≥ ī than for assets j < ī.

(ii) In high disagreement states (λ̃ = λ > 0), conditional on σ2
i , expected returns ERej are strictly increasing

with cash-flow beta bj for assets j < ī. For assets j ≥ ī, the slope of the return/cash-flow beta relationship

can be either higher or lower than for assets j < ī. There exists ρ? < 1 such that for ρ ≥ ρ?, this slope is

strictly lower for b ≥ bī than for b < bī.

(iii) Conditional on σ2
i , expected returns ERej can decrease strictly with cash-flow beta bj for assets j ≥ ī

in high disagreement states, provided ρ is close to 1 and λ is large enough.

(iv) Conditional on σ2
i , the slope of the returns/cash-flow beta relationship for assets j ≥ ī is strictly lower

in high disagreement states (λ̃ = λ > 0) than in low disagreement states (λ̃ = 0).

Proof. See Appendix G.

H. Calibration

In this section, we present a simple calibration of the dynamic model presented in the previous section.

The objective of this calibration is to see what magnitude of aggregate disagreement is required to obtain

a significant distortion in the Security Market Line. We use the following parameters. First, ρ is set
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to .95. This estimate is obtained by dividing our time-series into high and low aggregate disagreement

month (i.e., above and below the median of aggregate disagreement) and computing the probability of

transitioning from high to low disagreement (P = .05) and from low to high disagreement (P = .05). We

set α to .66 (i.e., θ = .5), which corresponds to the fraction of the stock market held by mutual funds and

retail investors, for which the cost of shorting is presumably non-trivial.

The most difficult parameter for us to set is N . We have shown in Section I.F that when N is large,

the Security Market Line can only be upward or downward sloping but not inverted U-shaped. However,

we argue that a large N is not a good calibration for our model. In the presence of such fixed costs,

investors will trade a much smaller number of assets than the overall number of assets in the market. Of

course, introducing fixed costs of trading in our model complicate the analysis substantially and we defer

a full treatment of this more complex model to further research. In particular, with fixed trading costs,

the choice of which asset to trade becomes endogeneous. We believe, however, that the main elements of

our analysis would remain unchanged and we highlight here how this endogenous selection of asset may

affect our analysis.

When investors face fixed trading costs, there is in equilibrium a segmentation of the market. Optimists

would tend to buy, all else equal, the segment of high cash-flow beta assets, as opposed to our current

model with no trading costs where they trade all assets. As in our model, the pessimists would only trade

on the segment of low beta assets. However, one notable difference with our current setup is that the

pessimists would now be the only investors holding these low beta assets. As a consequence, the low beta

assets will be underpriced. This effect will reinforce our results as the under-priced low beta securities

make the Security Market Line “kinkier”.

With these fixed trading costs, arbitrageurs also need to decide on which assets to trade. First, in

equilibrium, they need to hold the segment of intermediate cash-flow beta securities. To the extent that

mispricing on high and low beta assets is not large – that aggregate disagreement λ is not too large

– the risk-premium they receive for holding these intermediate beta assets will compensate more than

the arbitrage premium they would receive from shorting the high beta securities. As disagreement λ

increases, a fraction of arbitrageurs will start shorting the high beta assets: in this case, arbitrageurs

engage in shorting in an amount such that the utility they derive from shorting the high beta stocks is

equal to the utility of holding the intermediate beta stocks. Thus, as λ increases, the amount of arbitrage
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capital devoted to shorting the high beta stocks increases. However, at the same time, optimistic MFs

increase their leverage to bet on high beta stocks. This increase in optimistic MFs’ demand may well

dominate the effect of increased shorting by arbitrageurs.16

Beyond trading costs, there exist additional reasons why mutual fund managers invest among a re-

stricted set of stocks. Most mutual fund managers are benchmarked to indices, such as the Morningstar

Large Cap Growth Index or the Russell 1000 Growth Index. These indices typically only have a few

hundred stocks as constituent members. Hence, because of their index or tracking mandates, most mu-

tual fund managers are forming their portfolios based on a universe of only a few hundred stocks. Retail

investors are also trading within a restricted universe of stocks, as it is well-known that these investors

typically only consider buying stocks that they are familiar with, such as stocks headquartered near where

they live or stocks with high advertising presence (Huberman (2001) or Barber and Odean (2008)). To

the extent that the betas of the securities these investors consider are evenly distributed, our model can

be directly applied using the average number of stocks held by each investors as the N in our model.

Consistent with N being small for mutual fund investors, Griffin and Xu (2009) shows that from 1980

to 2004, which overlaps with our sample period, the average number of stocks held by mutual funds is

between 43 and 119. Consistent with N being even smaller for retail investors, Kumar and Lee (2006)

documents, using a dataset from a large US retail broker in the 1990s, that the average retail investor

holds a 4-stock portfolio. Fewer than 5% of retail investors hold more than 10 stocks.

As noted in Barber and Odean (2000), in 1996, approximately 47% of equity investments in the United

States were held directly by households and 14% by mutual funds, although these shares evolve quite a

bit through time. As such, N = 50 seems in the relevant range for the universe of stocks typical number

of stocks held by long only investors. The calibration we perform below is not very sensitive to small

changes to N around this N = 50 number.17 As expected however, when N becomes very large, we get

the result we derived theoretically in Section I.F, when solving the complete market case: the Security

Market Line can only be upward or downward sloping but not inverted U-shaped as is the case when N

is smaller and in the calibration we perform below.

We set the values of bi such that bi = 2i
N+1 . Thus, cash-flow betas are bounded between 0 and 2

and have an average value of 1. We implement our calibration in the following way. We set a value

for λ. We then find the values for σ2
z , σ2

ε and γ such that the model matches the following empirical
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moments, computed over the 1981-2011 period: (i) average volatility of the monthly market return (.2%

monthly) (ii) the average idiosyncratic variance of monthly stock returns (3.5% monthly) and (iii) the

average expected excess return of the market (.63% monthly).18 Finally, our calibration method borrows

from Campbell et al. (1993), who also calibrate a CARA model using dollar returns as we do by setting

the dividend to have a price of the asset equal to 1. We report four calibrations in Figure 4:

1. λ = 0.008, which implies σ2
ε = .0305, σ2

z = .0014 and γ = .32. 38 of the 50 assets are shorted at

equilibrium. This level of disagreement corresponds to 20% of σz. Figure 4(a) plots the Security

Market Line for these parameter values. Figure 4(a) shows that for this level of disagreement, the

distortion on the Security Market Line is limited. Even in the high aggregate disagreement state,

the Security Market Line is upward sloping with a slope close to its slope in the low aggregate

disagreement state.

2. λ = 0.013, which implies σ2
ε = .0305, σ2

z = .0013 and γ = .31. 45 of the 50 assets are shorted at

equilibrium. This level of disagreement corresponds to 35% of σz. Figure 4(b) shows that for this

level of disagreement, the distortion on the Security Market Line becomes noticeable. In the high

aggregate disagreement state, the Security Market Line is still upward sloping for all β, but with

a much smaller slope for assets with bi ≥ bī. The Security Market Line is kink-shaped in the high

aggregate disagreement state.

3. λ = 0.022, which implies σ2
ε = .0305, σ2

z = .0011 and γ = .27. 47 of the 50 assets are shorted at

equilibrium. This level of disagreement corresponds to 65% of σz. Figure 4(c) shows that for this

level of disagreement, in the high aggregate disagreement state, the Security Market Line has an

inverted-U shape.

4. λ = 0.05, which implies σ2
ε = .0305, σ2

z = .0005 and γ = .16. 48 of the 50 assets are shorted

at equilibrium. This level of disagreement corresponds to 187% of σz. Figure 4(d) shows that for

this level of disagreement, in the high aggregate disagreement state, the Security Market Line is

downward sloping. Moreover, we also see on Figure 4(d) that assets with a beta greater than .9

have a negative expected excess return in the high aggregate disagreement state.

These calibrations overall support the idea that for reasonable levels of disagreement, the Security

Market Line in the high aggregate disagreement state will be significantly distorted relative to the low
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aggregate disagreement state.

[ Insert Figure 4 here ]

II. Data and Variables

A. Data Source

The data in this paper are collected from two main sources. U.S. stock return data are from the CRSP

tape and the analyst forecasts are from the I/B/E/S analyst forecast database. The I/B/E/S data starts

in December 1981.

We start with all available common stocks on CRSP between December 1981 and December 2014. We

then exclude penny stocks with a share price below $5 and microcaps, defined every months as stocks in

the bottom 2 deciles of the monthly market capitalization distribution using NYSE breakpoints. β’s are

computed with respect to the value-weighted market returns provided on Ken French’s website. Excess

returns are in excess of the US Treasury bill rate, which we also download from Ken French’s website. We

also use stock analyst forecasts of the earnings-per-share (EPS) long-term growth rate (LTG) as the main

proxy for investors’ beliefs regarding the future prospects of individual stocks. The data are provided in

the I/B/E/S database. As explained in detail in Yu (2010), the long-term forecast has several advantages.

First, it features prominently in valuation models. Second, it is less affected by a firm’s earnings guidance

relative to short-term forecasts. Because the long-term forecast is an expected growth rate, it is directly

comparable across firms or across time.

B. β-sorted portfolios

We follow the literature in constructing beta portfolios in the following manner. Each month, we use

the past twelve months of daily returns to estimate the market beta of each stock in that cross-section.

This is done by regressing, at the stock-level, the stock’s excess return on the contemporaneous excess

market return as well as five lags of the market return to account for the illiquidity of small stocks (Dimson

(1979)). Our measure of β is then the sum of these six OLS coefficients.

We then sort stocks every month into 20 β portfolios based on these pre-ranking betas, using only

stocks in the NYSE to define the β thresholds. We compute the daily returns on these portfolios, both
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equal- and value-weighted. Post-ranking β’s are then estimated using a similar market model – regressing

each portfolio’s daily returns on the excess market returns, as well as five lags of the market return, and

adding up these six OLS coefficients. These post-ranking β’s are computed using the entire sample period

(Fama and French (1992)). Table I presents descriptive statistics for the 20 β-sorted portfolios. The 20

β-sorted portfolios do exhibit a significant spread in β, with the post-ranking full sample β of the bottom

portfolio equal to .43 and that of the top portfolio equal to 1.78.

[ Insert Table I here ]

C. Measuring Aggregate Disagreement

Our measure of aggregate disagreement is similar in spirit to Yu (2010). Stock-level disagreement is

measured as the dispersion in analyst forecasts of the earnings-per-share (EPS) long-term growth rate

(LTG). We then aggregate this stock-level disagreement measure, weighting each stock by its pre-ranking

β.19 Intuitively, our model suggests that there are two components to the overall disagreement on a

stock dividend process: (1) a first component coming from the disagreement about the aggregate factor

z̃ – the λ in our model and (2) a second component coming from disagreement about the idiosyncratic

factor ε̃i. We are interested in constructing an empirical proxy for the first component only. To that end,

disagreement about low β stocks should only play a minor role since disagreement about a low β stock

has to come mostly from idiosyncratic disagreement – in the limit, disagreement about a β = 0 stock can

only come from idiosyncratic disagreement. Thus, we weight each stock-level disagreement by the stock’s

pre-ranking β.20

To assess the robustness of our analysis, we use two alternative proxies for aggregate disagreement. The

first of these alternative measures is the analyst forecast dispersion of Standard & Poor’s (S&P) 500 index

annual earnings-per-share (EPS). The problem with this top-down measure is that there are much fewer

analysts forecasting this quantity, making it far less attractive when compared to our bottom-up measure.

While our preferred measure of aggregate disagreement is constructed using thousands of individual-stock

forecasts, there are, on average, only 20 or so analysts in the sample covering the S&P 500 EPS. The second

alternative proxy we use is an index of the dispersion of macro-forecasts from the Survey of Professional

Forecasters. More precisely, we use the first principal component of the cross-sectional standard deviation

of forecasts on GDP, Industrial Production (IP), Corporate Profit and Unemployment from Li and Li
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(2014).

To simplify the reading of the tables in the paper, all these time-series measures of aggregate dis-

agreement are standardized to have 0 mean and a variance of 1. Table II presents summary statistics on

the time-series variables used in the paper. Figure 1 reports the time-series of our baseline disagreement

measure. It peaks during the 1981-1982 recession, the dot-com bubble of the late 90s and the recent

recession of 2008. When fundamentals are more uncertain, there is more scope for disagreement among

investors. In other words, the aggregate disagreement series is not the same as the business cycle as we

see high disagreement in both growth and recession periods.

[ Insert Table II here ]

In Figure 5, we highlight the role played by aggregate disagreement on the relationship between stock-

level disagreement and β. This figure is constructed in the following way. We divide our time-series into

high aggregate disagreement months (red dots) and low aggregate disagreement months (blue dots), where

high (resp. low) aggregate disagreement months are defined as being in the top (resp. bottom) quartiles

of the in-sample distribution of aggregate disagreement. Then, for each of our 20 β-sorted portfolios,

we plot the value-weighted average of the stock-level dispersion in analyst earnings forecasts against the

post-ranking full sample β of the value-weighted portfolio. Stock-level disagreement increases with β;

this relation, moreover, is steeper in months with high aggregate disagreement relative to months with

low aggregate disagreement: consistent with the premise of our model, we thus find that β does scale up

aggregate disagreement.

[ Insert Figure 5 here ]

III. Empirical Analysis

A. Aggregate Disagreement and the Concavity of the Security Market Line

A1. Main Analysis

Our empirical analysis examines how the Security Market Line is affected by aggregate disagreement.

To this end, we first present in Figure 6 the empirical relationship between β and excess returns. For each

of the 20 β portfolios in our sample, we compute the average excess forward return for high (red dots)
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and low (blue dots) disagreement months (defined as top vs. bottom quartile of aggregate disagreement).

Given the persistence in aggregate disagreement, we run this analysis using various horizons: 3-month

(top left panel), 6-months (top-right panel), 12 months (bottom-left panel) and 18 months (bottom-right

panel). The portfolio returns r(k)
P,t for k = 3, 6, 12, 18 are value-weighted.

While the relationship between excess forward returns and β is quite noisy at the 3 and 6 months

horizon, two striking facts emerge at the 12 and 18 months horizons. First, the average excess return/β

relationship is mostly upward sloping for months with low aggregate disagreement, except for the top

β portfolio which exhibit a somewhat lower average return. This is overall consistent with our theory

whereby low aggregate disagreement means low or even no mispricing and hence a strictly upward sloping

Security Market Line. Second, in months of high aggregate disagreement, the excess return/β relationship

appears to exhibit the inverted-U shape predicted by the theory.

[ Insert Figure 6 here ]

To formally test our Prediction 1, we run the following two-stage Fama-McBeth regressions in Table

III. Every month, we first estimate the following cross-sectional regression over our 20 β-sorted portfolios:

r
(12)
P,t = κt + πt × βP + φt × (βP )2 + εP,t, where P = 1, ..., 20

and r(12)
P,t is the 12-months excess return of the P th beta-sorted portfolio and βP is the full sample post-

ranking beta of the P th beta-sorted portfolio.21 We retrieve from this analysis a time-series of coefficient

estimates for κt, πt and φt. Note that our analysis focuses here on 12 months returns. Since our aggregate

disagreement variable is persistent, our results will tend to be stronger over longer horizons (Summers

(1986), Campbell and Shiller (1988)). For robustness, we present in Table AII the results from a similar

analysis using different horizons.

[ Insert Table III here ]

The time-series of coefficient estimates φt is the dependent variable of interest in our analysis. Given

the post-ranking β of our β-sorted porftolios, this φt series corresponds to the excess returns on a portfolio

that goes long the two bottom β portfolio (P=1 to 6) as well as the two top β portfolios (P=19 and 20)

and short the remaining portfolios. As explained in Section I.C, this portfolio’s returns capture, each
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month, the concavity of the security market line. Prediction 1 is that when aggregate disagreement is

higher, this portfolio should have significantly lower returns.

To examine the evidence in support of Prediction 1, we thus regress, in a second-stage, the φt time-

series on Agg.Disp.t−1 only (column (1)), where Agg.Disp. stands for the monthly β-weighted average of

stock level disagreement introduced in Section II.C and is measured in month t − 1. Noxy-Marx (2014)

shows that the returns on defensive equity strategies load significantly on standard risk-factors. Although

our portfolio of interest is not a slope portfolio but the square portfolio, we nonetheless follow Noxy-Marx

(2014)’s and control in column (2) for the 12-months returns of the Fama and French (1992) factors and

Jegadeesh and Titman (1993) momentum factor measured in month t.22 Column (3) adds the dividend-

to-price ratio D/Pt−1 and the year-on-year inflation rate measured in month t − 1, Inflationt−1, from

Cohen et al. (2005). Column (4) finally adds the TedSpread measured in month t − 1 from Frazzini

and Pedersen (2010). Columns (5)-(8) and (9)-(12) are the corresponding columns where the dependent

variables are respectively the estimated κt and πt. In these estimations, standard errors are Newey-West

adjusted, and allow for 11 lags of serial correlation.

Panel A of Table III shows the results from the second-stage regressions using value-weighted portfolios.

A higher Agg.Disp.t−1 is associated with a smaller φt, that is, a more concave Security Market Line or

equivalently lower average returns of the square portfolio. The t-stats are between -1.9 to -4 depending

on the specification. Importantly, the estimate is significant by itself even without any controls, although

the inclusion of the D/P ratio and the year-to-year past inflation rate does make the effect of aggregate

disagreement on the concavity of the SML more significant.

Interestingly, we see in Table III that a higher return on HML from t to t + 11 is correlated with

a more negative φt – a more concave Security Market Line. We believe this result is consistent with a

simple extension of our model. Note first that our model generates, even in the absence of disagreement,

a value-growth effect through risk – high risk stocks have low price and higher expected returns (Berk

(1995)). To abstract from this effect, one can simply define the fundamental value of a stock as its

expected dividend minus its risk-premium – F = d − 1
γ

(
biσ

2
z + σ2

ε
N

)
. This is the fundamental price an

investor would expect to pay for the stock based purely on risk-based valuation. As in Daniel et al. (2001),

we then define the price-to-fundamental ratio as: P − F and the return on the high-minus-low (HML)

portfolio is simply defined as the return of the long-short portfolio that goes long the stock with the lowest
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price-to-fundamental ratio and short the stock with the highest price-to-fundamental ratio. In our static

model, as long as bNω(λ) > σ2
ε
N , this ratio corresponds to the return on a portfolio short asset N and long

any asset k ∈ [1, ī − 1]. The return on this portfolio is given by: (bk − bN ) σ
2
z
γ + θ

γ

(
bNω(λ)σ2

z − σ2
ε
N

)
. In

particular, the return on this HML portfolio is strictly increasing with λ. Thus, a larger return on the

HML portfolio will be associated with a smaller slope of the Security Market Line. Empirically, to the

extent that our proxy for aggregate disagreement λ is measured with noise, we should thus expect the

return to HML to have a significant and negative correlation with the concavity of the Security Market

Line. This is precisely what we observe in Column (2), (3) and (4) of Table III. This result, although

not the main point of the paper, is novel in that it connects the failure of the CAPM to HML through

time-variation in aggregate disagreement.

In contrast, we see that the a larger contemporaneous return on SMBt corresponds to a more convex

SML. Inflation comes in with a negative sign — the higher is inflation, the more concave or flatter the

Security Market Line. TedSpread is not significantly related to the concavity of the SML. Panel B of

Table III shows the results from a similar analysis using equal-weighted β-sorted portfolios. The results

in Panel B are quantitatively similar to those in Panel A, with a higher level of statistical significance.

Overall, consistent with Prediction 1, we find that higher level of aggregate disagreement are associated

with a more concave security market line in the following months.

A2. Robustness Checks

We present in the Internet Appendix a battery of robustness checks for this result.

In Table AI, we show the analogous results to Table III but where the pre-ranking βs are now estimated

by regressing monthly stock returns over the past 3 years on the contemporaneous market returns. The

results are quantitatively very close to those obtained in Table III.

In Table AII, we use different horizons for the portfolio returns used in the first-stage regression –

namely 1, 3, 6 and 18 months. While the effect of disagreement on the concavity of the SML is insignificant

when using a 1 or 3 month horizon (but of the right sign), it is significant when using a 6 or 18-month

horizon. Note that once D/Pt−1 and Inflationt−1 are included in the regression, aggregate disagreement

becomes significantly and negatively correlated with the concavity of the SML at all horizon. The fact

that short-horizon results are weaker is to be expected given the literature on long-horizon predictability
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associated with persistent predictor variables and the fact that Agg.Disp. is persistent.

In Table AIII, we use the alternative measures of aggregate disagreement introduced in Section II.C.

In Panel A, aggregate disagreement is constructed using pre-ranking compressed β (i.e. β = .5 β̂ + .5) to

weight the stock-level disagreement measure. In Panel B, we use β × value-weights to define aggregate

disagreement. In Panel C, disagreement is the “top-down” measure of market disagreement used in Yu

(2011) and measured as the standard deviation of analyst forecasts of annual S&P 500 earnings, scaled by

the average forecast on S&P 500 earnings. In Panel D, disagreement is the first principal component of the

monthly cross-sectional standard deviation of forecasts on GDP, IP, Corporate Profit and Unemployment

rate in the Survey of Professional Forecasters (SPF) and is taken from Li and Li (2014). All these series

are standardized to have mean 0 and variance 1. In all specifications, especially those that include the

additional covariates, we get results that are quantitatively close to our baseline results presented in Table

III, although of the estimated coefficients are less significant than in our baseline result.23

A potential concern with our analysis is that our results are a simple recast of the results in Diether

et al. (2002): high beta stocks experience more idiosyncratic disagreement, especially in high aggregate

disagreement months so that the effect of aggregate disagreement on the Security Market Line would work

entirely through idiosyncratic disagreement. In Table AIV, we show this is not the case. To this end,

we replicate the analysis of Table III, but we now control, in our first stage regression, for the logarithm

of the average disagreement on the stocks in each of the 20 β-sorted portfolios. Again, our results are

virtually unchanged by this additional control in the first-stage regression.

Another empirical concern with the analysis from Table III is that (1) high beta stocks have higher

idiosyncratic volatility (2) idiosyncratic stocks have lower returns (Ang et al. (2006)) (3) perhaps especially

when aggregate disagreement is high. The next section in the paper, Section III.B tests the asset pricing

equation from our model when dividends are allowed to be heteroskedastic. However, we can also simply

amend our methodology to include, in the first-stage regression, a control for the median idiosyncratic

volatility of stocks in each of the 20 β-sorted portfolios.24 The results are presented in Table AV. The point

estimates are quantitatively similar to those obtained in Table III, although the statistical significance

is slightly lower (t-stat ranging from 1.6 to 2.4 in the value-weighted specification, from 2 to 2.6 in the

equal-weighted specification). Our main finding is thus robust to controlling directly, in the first-stage

regressions, for the idiosyncratic volatility of the stocks included in the 20 β-sorted portfolios.
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A3. Disagreement and the Slope of the Security Market Line

Corollary 3 showed that the slope of the SML should decrease with aggregate disagreement. Although

we argued in Section I.C that this was a weaker test of our model – since it fails to account for the kinks

in the SML predicted in the model – we nonetheless present in Table AVI a test for this prediction. This

test is again a two-stage procedure. In the first-stage, we regress each month the excess return on the

20-β sorted portfolios on their post-ranking full sample β:

r
(12)
P,t = κt + πt × βP + εP,t, where P = 1, ..., 20

πt is here is the variable of interest, that is, the slope of the SML in month t. πt represents the 12-month

excess returns of a “slope” portfolio in month t – a portfolio that goes long the portfolios with above

average β and short the portfolio with below average β. Column (1) of Tables AVI shows that by itself,

aggregate disagreement in month t− 1 does predict a significantly flatter SML in the following month. In

Column (2), we see that introducing the contemporaneous 4-factor returns in the regression does absorb

most of the effect of disagreement on the slope of the SML. However, we also see in this column, as well as

in column (3) and (4) that a higher HML 12-month returns in month t is associated with a significantly

flatter SML at t.25 As we explained above, this result is a natural prediction of our model, since aggregate

disagreement lead to the mispricing of high beta securities, which then mean-revert. Interestingly, the

inclusion of D/Pt−1 and Inflationt−1 in Column (3) and (4) make the effect of aggregate disagreement on

the slope of the SML significant again. Consistent with Cohen et al. (2005), a higher level of Inflationt−1

leads to a flatter Security Market Line. As in Frazzini and Pedersen (2010), the TedSpread does not

significantly explain the average excess returns of the slope portfolio.

B. Heteroskedastic Idiosyncratic Variance

We now turn our attention to our main test for Prediction 2, mainly that the slope of the Security

Market Line is more sensitive to aggregate disagreement for stocks with high βi/σ2
i ratio relative to stocks

with a low βi/σ
2
i ratio.

To test this prediction, we need to ascribe a value for the threshold βī
σ2
ī

defining speculative and
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non-speculative stocks. Our strategy is to use as a baseline specification a threshold corresponding to

the median βi
σ2
i
ratio and to then assess the robustness of the results to this particular choice. More

precisely, our test for Prediction 2 is based on a 3-stage approach. In the first-stage, we rank stocks

each month based on their pre-ranking ratio of β to σ2 and define as speculative (resp. non speculative)

stocks all stocks with a ratio above (resp. below) the NYSE median ratio: β̂i
σ̂2
i
> NYSE median β̂

σ̂2

(resp. β̂i
σ̂2
i
≤ >NYSE median β̂

σ̂2 ). This creates two groups of stocks for each month t: speculative and

non-speculative stocks. Within each of these two groups, we then re-rank the stocks in ascending order

of their estimated beta at the end of the previous month and assign them to one of 20 beta-sorted

portfolios using again NYSE breakpoints. We compute the full sample beta of these 40 value-weighted

portfolios (20 beta-sorted portfolios for speculative stocks; 20 beta-sorted portfolios for non-speculative

stocks) using the same market model. βP,s is the resulting full sample beta, where P = 1, . . . , 20 and s

∈ {speculative, non speculative}. Table IV presents descriptive statistics for the resulting 40 portfolios.

We see in particular that (1) the constructed portfolios generate significant spreads in the post-ranking

full sample βs and (2) ex post, the β/σ2 ratio of the β-sorted portfolios created from speculative stoccks

is in fact much higher than the β/σ2 ratio of the β-sorted porftolios created from non-speculative stocks:

the average β/σ2 ratio for speculative stocks is .61 while it is only .25 for non-speculative stocks.26

[ Insert Table IV here ]

For each of these two groups of portfolios s ∈ {speculative, non speculative}, we then estimate every

month the following cross-sectional regressions, where P is one of the 20 β-sorted portfolios,and t is a

month :

r
(12)
P,s,t = ιs,t + χs,t × βP,s + %s,t × ln (σP,s,t−1) + εP,s,t,

where σP,s,t−1 is the median idiosyncratic volatility of stocks in portfolio (P, s) estimated at the end of

month t − 1 and r
(12)
P,s,t is the value-weighted 12-months excess return of portfolio (P, s). In contrast to

βP,s, σ2
P,s,t−1 has a large skew, so that we use the logarithm of σP,s,t−1 in the cross-sectional regressions

to limit the effect of outliers on the regression estimates. We retrieve a time-series of monthly estimated

coefficients: ιs,t, χs,t and %s,t. As we did for Table III, we finally regress in a third-stage each of these

series on Agg.Disp.t−1, the contemporaneous four-factor alphas (Rm,t, HMLt, SMBt, and UMDt) and a

set of additional forecasting variables measured in month t−1, D/Pt−1, Inflationt−1, and TedSpreadt−1.
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Standard errors are Newey-West adjusted, and allow for 11 lags of serial correlation.

Figure 7 summarizes our findings in a simple graphical analysis. In this figure, we compute, for the

20 β-sorted portfolios constructed from speculative stocks as defined above (bottom panel) and the 20

β-sorted portfolios constructed from non-speculative stocks, the average excess 12-month return for high

(red dots) and low (blue dots) disagreement months (defined as top vs. bottom quartile of aggregate

disagreement). For non-speculative stocks, we see that the Security Market line is not related in a clear

way with aggregate disagreement. For speculative stocks, however, Figure 7 suggests that when aggregate

disagreement is high, the SML exhibit an inverted-U shape while there is no such kink in months with

low aggregate disagreement. This first pass at the data is thus consistent with Prediction 2, namely that

aggregate disagreement makes the SML flatter only for speculative stocks.

[ Insert Figure 7 here ]

Table V reports the result from the actual regression analysis. Panel A of this table shows the

estimation results of the third-stage regression when using portfolios constructed from speculative stocks.

Panel B presents the results from portfolios constructed from non-speculative stocks. The first four

columns (1)-(4) exhibit the estimation results for our main coefficient of interest χs,t, which measures

the slope of the conditional Security Market Line, conditional on the idiosyncratic variance of portfolios.

Consistent with prediction 2, an increase in aggregate disagreement in month t − 1 is associated with a

significantly flatter Security Market Line – holding portfolio variance constant – only in Panel A, that

is, only for stocks with a β/σ2 ratio above the NYSE median ratio. In Panel B, where the portfolios

are formed from stocks with a β/σ2 ratio below the NYSE median ratio, aggregate disagreement is not

significantly related to the slope of the SML. Across our four specifications, which include additional

controls, including the contemporaneous 4-factor returns, the results are similar: a higher aggregate

disagreement in month t− 1 leads to a significantly flatter slope of the SML (with t-stats rangin from 2.1

to 2.9) when β-sorted portfolios are formed using speculative stocks; there is no significant relationship

between aggregate disagreement and the slope of the SML for these portfolios that are constructed using

non-speculative stocks. These results are consistent with Prediction 2.

The next four columns (5)-(8) of Table V show the regression estimates when %s,t is the dependent

variable. %s,t represents the effect of idiosyncratic variance (the log of) on the returns of these β-sorted

portfolios. Our model predicts that for speculative stocks, stocks with high idiosyncratic variance should
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have higher expected returns, especially when aggregate disagreement is high. In Panel A, column (5)-(8),

we see that both constant and the coefficients in front of Agg.Disp.t−1 are positive, consistent with our

model, but that they are not statistically significant. In some of the specifications below (most notably the

specification using equal-weighted portfolios), we find that these coefficients are not only positive but also

statistically significant. However, Table V shows that our model does not fully capture how idiosyncratic

variance is priced in the cross-section of stock returns.

In Panel B, we find that (1) idiosyncratic variance has no significant effect on the returns of β-sorted

portfolios constructed from non-speculative stocks (the constant is insignificant and small in magnitude)

(2) for these non-speculative portfolios, an increase in disagreement is associated with a lower effect of

idiosyncratic variance on the returns of these β-sorted portfolios (this effect is insignificant in all but

column (6) where the t-stat is 1.8). This negative sign is inconsistent with our model since in the model,

non-speculative stocks should have returns that are independent of aggregate disagreement. However, in

differential terms, these results could be reconciled with the model, to the extent that they show that the

effect of aggregate disagreement on the price of idiosyncratic variance is significantly larger for speculative

stocks than for non-speculative stocks.

[ Insert Table V here ]

We confirm the robustness of this analysis by performing a battery of additional tests. In Table VI,

we use equal-weighted portfolios instead of value-weighted portfolios. We obtain even more supporting

evidence in that the coefficients of interests are both economically larger and statistically more significant.

As mentionned above, we even find some support with these equal-weighted portfolios for the prediction

relating aggregate disagreement to the price of idiosyncratic variance.

[ Insert Table VI here ]

In Table AVII, the pre-ranking βs are estimated by regressing monthly stock returns over the past

3 years on the contemporaneous market returns. Results are essentially similar. In Table AVIII, we

reproduce the analysis of Table V using portfolio returns over an horizon of 1, 3, 6 and 18 months.

The results are not statistically significant using a 1-month horizon. However, starting at the 3-month

horizon and above, the results are consistent with the baseline 12-month horizon result shown in Table V:
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overall, the prediction that aggregate disagreement leads to a flatter SML for speculative stocks is strongly

supported in the data, while the prediction relating aggregate disagreement to the price of idiosyncratic

risk finds only mixed support.27

Our analysis so far has used an arbitrary cutoff to define speculative stocks, namely the median NYSE

β/σ2 ratio. In Figure 8, we reproduce a similar analysis to that performed in Table V but where we use

different cut-offs to define speculative versus non-speculative stocks. For each of these cutoffs, we plot the

coefficient estimate of the regression of aggregate disagreement on the slope of the SML χs,t, obtained from

the specification in Column (2), which includes only the realized 4-factor returns as controls. We select

this specification as it typically yields the smallest point estimates. The left (resp. right) Panel shows

the results obtained for portfolios formed from speculative (resp. non-speculative) stocks. The cut-offs

we use range from the 30th percentile of the NYSE distribution of the βi/σ2
i ratio to its 70th percentile.

Accross all these different specifications, we obtain consistent results in that aggregate disagreement leads

to a flatter SML only for speculative stocks. The effect of disagreement on the slope of the SML for

speculative stocks become larger (in absolute value) as the threshold to define speculative stocks become

more conservative.

[ Insert Figure 8 here ]

IV. Conclusion

We show that incorporating the speculative motive for trade into asset pricing models yields strikingly

different results from the risk-sharing or liquidity motives. High beta assets are more speculative because

they are more sensitive to disagreement about common cash-flows. Hence, they experience greater di-

vergence of opinion and in the presence of short-sales constraint for some investors, they end up being

over-priced relative to low beta assets. When aggregate disagreement is low, the risk-return relationship

is upward sloping. As aggregate disagreement rises, the slope of the Security Market Line is piecewise

constant, higher in the low beta range, and potentially negative for the high beta range. Empirical tests

using measures of disagreement based on security analyst forecasts are consistent with these predictions.

We believe our simple and tractable model provides a plausible explanation for part of the high-risk,

low-return puzzle. The broader thrust of our analysis has been to point out that one can construct a be-
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havioral macro-finance model in which aggregate sentiment can influence the cross-section of asset prices

in non-trivial ways.
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Figures and Tables

Figure 1. Time-series of Aggregate Disagreement

Note: Sample Period: 12/1981-12/2014. Sample: CRSP stock file excluding penny stocks (price < $5)
and microcaps (stocks in bottom 2 deciles of the monthly size distribution using NYSE breakpoints).
Each month, we calculate for each stock the standard deviation of analyst forecasts on the stock’ long
run growth of EPS, which is our measure of stock-level disagreement. We also estimate for each stock
i β̂i,t−1, the stock market beta of stock i at the end of the previous month. These betas are estimated
with a market model using daily returns over the past calendar year and 5 lags of the market returns.
Aggregate Disagreement is the monthly β̂i,t−1-weighted average of stock-level disagreement.
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Figure 2. Security Market Line for Different Levels of Aggregate Disagreement
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Figure 3. Timeline of the dynamic model of Section I.G

Dividend dt is 
realized 

- New generation t 
is born and invests 
- Disagreement 
shock for new 
generation is 
realized (λ) 
-  Old generation 
sells portfolio and 
consumes. 

Period t 
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Figure 4. Calibration of the dynamic model

Note: This figure plots the Security Market Line in the high aggregate disagreement state (blue dots)
and in the low aggregate disagreement state (green dots) obtained from the simulation of the dynamic
model. Across simulations, we use the following parameters: θ = .5, N = 50 and ρ = .95. Each of the
four panels set a value of λ (.008 in panel (a), .013 in panel (b), .022 in panel (c) and .05 in panel (d)) and
then find the values for σ2

z , σ2
ε and γ that match the empirical average idiosyncratic variance of monthly

stock returns, the empirical variance of the monthly market return and the empirical average return on
the market portfolio over the sample period.

(a) λ = .008, σ2
z = .0014, σ2

ε = .0305, γ = .32 (b) λ = .013, σ2
z = .0013, σ2

ε = .0305, γ = .31

(c) λ = .022, σ2
z = .0011, σ2

ε = .0305, γ = .27 (d) λ = .05, σ2
z = .0305, σ2

ε = .0005, γ = .16
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Figure 5. Stock Level Disagreement and β

Note: Sample Period: 12/1981-12/2014. Sample: CRSP stock file excluding penny stocks (price < $5)
and microcaps (stocks in bottom 2 deciles of the monthly size distribution using NYSE breakpoints). At
the beginning of each calendar month, stocks are ranked in ascending order on the basis of their estimated
beta at the end of the previous month. Pre-formation betas are estimated with a market model using daily
returns over the past calendar year and 5 lags of the market returns. The ranked stocks are assigned to one
of twenty portfolios based on NYSE breakpoints. The graph plots the value-weighted average stock-level
disagreement of stocks in these portfolios of the 20 β-sorted portfolios for months in the bottom quartile
of aggregate disagreement (in blue) and months in the top quartile of aggregate disagreement (in red).
Stock-level disagreement is the standard deviation of analyst forecasts on stocks’ long run growth of EPS.
Aggregate disagreement is the monthly β-weighted average of this stock level disagreement measure.
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Figure 6. Excess Returns, β and Aggregate Disagreement

Note: Sample Period: 12/1981-12/2014. Sample: CRSP stock file excluding penny stocks (price < $5)
and microcaps (stocks in bottom 2 deciles of the monthly size distribution using NYSE breakpoints). At
the beginning of each calendar month, stocks are ranked in ascending order on the basis of their estimated
beta at the end of the previous month. Pre-formation betas are estimated with a market model using daily
returns over the past calendar year and 5 lags of the market returns. The ranked stocks are assigned to
one of twenty value-weighted portfolios based on NYSE breakpoints. The graph plots the average excess
returns over the next 3 months (panel (a)) 6 months (panel (b)), 12 months (panel (c)) and 18 months
(panel (d)) of the 20 β-sorted portfolios for months in the bottom quartile of aggregate disagreement (in
blue) and months in the top quartile of aggregate disagreement (in red). Aggregate disagreement. is the
monthly β-weighted average of stock level disagreement measured as the standard deviation of analyst
forecasts on stocks’ long run growth of EPS.

(a) 3 month value-weighted return (b) 6 months value-weighted return

(c) 12 months value-weighted return (d) 18 months value-weighted return
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Figure 7. Excess Returns, β and Aggregate Disagreement: Speculative vs. non-speculative stocks

Note: Sample Period: 12/1981-12/2014. Sample: CRSP stock file excluding penny stocks (price < $5) and microcaps (stocks
in bottom 2 deciles of the monthly size distribution using NYSE breakpoints). At the beginning of each calendar month,
stocks are ranked in ascending order on the basis of the estimated ratio of beta to idiosyncratic variance ( β

σ2 ) at the end of
the previous month. Pre-formation betas and idiosyncratic variance are estimated with a market model using daily returns
over the past calendar year and 5 lags of the market returns. The ranked stocks are assigned to two groups: speculative
( β̂i
σ̂2
i
> NYSE median β̂

σ̂2 in month t) and non-speculative stocks. Within each of these two groups, stocks are then ranked in
ascending order of their estimated beta at the end of the previous month and are assigned to one of twenty value-weighted
beta-sorted portfolios based on NYSE breakpoints. The graph plots the average excess returns over the next 12 months
for the 20 β-sorted portfolios for months in the bottom quartile of aggregate disagreement (in blue) and months in the
top quartile of aggregate disagreement (in red). Aggregate disagreement. is the monthly β-weighted average of stock level
disagreement measured as the standard deviation of analyst forecasts on stocks’ long run growth of EPS. Panel (a) plots
these excess returns for non-speculative stocks, panel (b) for the speculative stocks.

(a) 12 months value-weighted return for non-speculative stocks

(b) 12 months value-weighted return for speculative stocks
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Table II. Summary Statistics for Time-Series Variables

Note: To construct Agg. Disp, we start from the CRSP stock file excluding penny stocks (price < $5)
and microcaps (stocks in bottom 2 deciles of the monthly size distribution using NYSE breakpoints).
Each month, we calculate for each stock the standard deviation of analyst forecasts on the stock’ long run
growth of EPS, which is our measure of stock-level disagreement. We also estimate for each stock i β̂i,t−1,
the stock market beta of stock i at the end of the previous month. These betas are estimated with a
market model using daily returns over the past calendar year and 5 lags of the market returns. Agg. Disp.
is the monthly β̂i,t−1-weighted average of stock-level disagreement. Agg. Disp. (compressed) uses .5β̂i+ .5

as weight for stock i instead of β̂i. Agg. Disp (β× Value weight) uses β̂i× (Market Value)i as weight for
stock i instead of β̂i. Top-down Disp. is the monthly standard deviation of analyst forecasts of annual
S&P 500 earnings, scaled by the average forecast on S&P 500 earnings. SPF Disp. is the first principal
component of the standard deviation of forecasts on GDP, IP, Corporate Profit and Unemployment rate
in the Survey of Professional Forecasters (SPF) and is taken from Li and Li (2014). These measures of
aggregate disagreement are standardized to have an in-sample mean of 0 and a standard deviation of
1. D/P is the aggregate dividend-to-price ratio from Robert Shiller’s website. R(12)

m,t , SMB(12)
t , HML(12)

t ,
UMD(12)

t are the 12 months monthly returns on the market, SMB, HML and UMD portfolios from Ken
French’s website and are expressed in %. TED is the TED spread and Inflation is the yearly inflation rate.
The sample period goes from 12/1981 to 12/2014, and the summary statistics are displayed for months
where both Agg. Disp and R(12)

m,t are non-missing.

Mean Std. Dev. p10 p25 Median p75 p90 Obs.
Agg. Disp. -0.00 1.00 -0.96 -0.79 -0.21 0.42 1.28 385
Agg. Disp. (compressed) 0.00 1.00 -1.04 -0.79 -0.16 0.57 1.46 385
Agg. Disp. (β × Value weight) 0.00 1.00 -1.00 -0.84 -0.33 0.67 1.47 385
Top-down Disp. 0.00 1.00 -0.43 -0.37 -0.27 -0.13 0.64 353
SPF Disp. 0.00 1.00 -1.00 -0.78 -0.14 0.44 1.06 361
R(12)
m,t 8.82 16.95 -15.47 0.41 10.53 19.73 27.93 385

SMB(12)
t 1.23 9.91 -9.46 -5.32 0.18 6.93 14.11 385

HML(12)
t 3.96 13.32 -10.45 -4.52 3.11 10.77 17.50 385

UMD(12)
t 7.15 16.56 -9.29 -0.91 7.58 16.92 25.53 385

D/P 2.58 1.09 1.41 1.76 2.17 3.24 4.21 385
Inflation 0.03 0.01 0.01 0.02 0.03 0.03 0.04 385
TED spread 0.72 0.57 0.20 0.32 0.56 0.91 1.34 385
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5
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5
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5
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5
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Notes

1A non-exhaustive list of studies include Blitz and Vliet (2007), Cohen et al. (2005), and Frazzini and Pedersen (2010).
2The value-growth effect (Fama and French (1992), Lakonishok et al. (1994)), buying stocks with low price-to-fundamental

ratios and shorting those with high ones, generates a reward-to-risk or Sharpe (1964) ratio that is two-thirds of a zero-beta

adjusted strategy of buying low beta stocks and shorting high beta stocks. The corresponding figure for the momentum effect

(Jegadeesh and Titman (1993)), buying past year winning stocks and shorting past year losing ones, is roughly three-fourths

of the long low beta, short high beta strategy.
3Indeed, most behavioral models would also not deliver such a pattern. In Barberis and Huang (2001), mental accounting

by investors still leads to a positive relationship between risk and return. The exception is the model of overconfident

investors and the cross-section of stock returns in Daniel et al. (2001) that might yield a negative relationship as well but

not the new patterns with beta we document below.
4See Hong and Stein (2007) for a discussion of the various rationales. A large literature starting with Odean (1999) and

Barber and Odean (2001) argues that retail investors engage in excessive trading due to overconfidence.
5See Lamont (2004) for a discussion of the many rationales for the bias against shorting in financial markets, including

historical events such as the Great Depression in which short-sellers were blamed for the Crash of 1929.
6The consideration of a general disagreement structure about both means and covariances of asset returns with short-

sales restrictions in a CAPM setting is developed in Jarrow (1980). He shows that short-sales restrictions in one asset

might increase the prices of others. It turns out that a focus on a simpler one-factor disagreement structure about common

cash-flows yields closed form solutions and a host of testable implications for the cross-section of asset prices that would

otherwise not be possible.
7High beta stocks might also be more difficult to arbitrage because of incentives for benchmarking and other agency

issues (Brennan (1993), Baker et al. (2011)).
8When aggregate disagreement is so large that pessimists are sidelined on all assets, the relationship between risk and

return is entirely downward sloping as the entire market becomes overpriced. We assume that all assets in our model have

a strictly positive loading on the aggregate factor. Thus, it is always possible that pessimists want to be short an asset,

provided aggregate disagreement is large enough.
9The “square” portfolio, which corresponds to the monthly coefficient estimate of a regression of portfolio returns on the

portfolio’s β2, is a portfolio that goes long the top 3 and bottom 6 β-sorted portfolios and short the remaining portfolios. It

thus captures intuitively the inverted-U shape of the Security Market Line in our theoretical analysis.
10This normalization of supply to 1/N is without loss of generality. If asset i is in supply si, then what matters is the

ranking of assets along the bi
si

dimension. The rest of the analysis is then left unchanged.
11The condition defining the marginal asset ī, ī = min {k ∈ [0, N + 1] | λ > uk} corresponds to an N -asset generalization

of the condition defining the equilibrium with short-sales constraint in the one-asset model of Chen et al. (2002). An intuition

for this condition is that disagreement has to be larger than the risk-premium for bearing the risk of an asset for short-sales

constraints to bind. Otherwise, even pessimists would like to be long the risky asset. The sequence (ui), which plays a key
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role in this condition, corresponds to the equilibrium holding in asset i of pessimist investors. Naturally, these ui’s depend

on the risk-tolerance γ, the supply of risky assets 1/N and the covariance of asset i with other assets.
12The derivation of this formula can be found in Appendix D.
13Most of the assumptions made in this model are discussed in Section I.A in the context of our static model.
14λat = 0, λAt = λ and λBt = −λ when λ̃t = λ or λat = λAt = λBt = 0 when λ̃t = 0 and λat = 0

15In the low disagreement state, λ̃ = 0 so there is no disagreement among investors and hence there cannot be any binding

short-sales constraint.
16In a simple 3 asset version of this model with trading costs, we can show that mispricing is in fact increasing with λ.
17We performed calibrations using N = 25 and N = 75 and found similar qualitative results.
18The volatility and average excess return on the market are directly computed from the monthly market return series

obtained from Ken French’s website. To compute the average idiosyncratic variance of stock returns, we first estimate a

CAPM equation for each stock in our sample using monthly excess returns, we then compute the variance of the residuals

from this equation by stock and finally define the average idiosyncratic variance as the average of these variances across all

stocks in our sample.
19The pre-ranking β are constructed as detailed in Section II.B.
20In Table I.A AIII, we show that our main results are robust to different weighting-schemes: (1) weighting using com-

pressed betas (2) weighting using the product of beta and size. These measures also use pre-ranking betas.
21We have also checked hermite polynomials in this specification but the quadratic functional fits the best.
22Noxy-Marx (2014) also shows that a significant part of the returns on defensive equity strategies is driven by exposure

to a profitability factor. In unreported regressions, available from the authors upon request, we show that the inclusion of

this additional factor does not affect our results.
23In addition, Li (2014) also tests our model using dispersion of macro-forecasts for each of these macro-variables separately.

But rather than using 20-β portfolios, he forms optimal tracking portfolios for each of these macro-variables and calculates

each stock’s macro-beta with respect to these macro-tracking portfolios and finds that when aggregate disagreement is high,

higher macro-beta stocks under-perform lower macro-beta stocks.
24We use the logarithm of the idiosyncratic volatility as a control variable in the first-stage regression to account for the

skewness in this variable
25This result is consistent with the result in Noxy-Marx (2014) – the novelty here is that our model proposes an explanation

for this correlation.
26This is true for all but the top β portfolio created from speculative stocks, which has a β/σ2 ratio of .25 only. Excluding

this portfolio does not change our analysis qualitatively.
27 This is true except at the 3-month horizon where both the prediction relating aggregate disagreement to the price of β

and the price of idiosyncratic variance are verified.
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Internet Appendix
For Online Publication Only

A. Proofs of the Model

A. Proof of Theorem 1

Proof. We solve the model here allowing for heteroskedastic dividend σ2
i . Theorem 1 can then be proved as a special case

σ2
ε = σ2

i . We assume that assets are ranked in ascending order of β/σ2.

We first posit an equilibrium structure and check ex-post that it is indeed an equilibrium and then that it is the unique

equilibrium. Let ī ∈ [2, N ] and let µmi be the share holdings of asset k by group m where m ∈ {a,A,B}. Consider an

equilibrium where group B investors are long on assets i < ī and hold no position (i.e., µBi = 0) for assets i ≥ ī and group

A investors are long all assets i ∈ [1, N ]. Since group A investors are long, their holdings satisfy the following first order

conditions:

∀i ∈ [1, N ] : d+ λbi − Pi(1 + r) =
1

γ

((
N∑
k=1

bkµ
A
k

)
biσ

2
z + µAi σ

2
i

)
Since group B investors are long only on assets i < ī, their holdings for these assets must also satisfy the following first order

condition:

∀i ∈ [1, ī− 1], d− λbi − Pi(1 + r) =
1

γ

((
ī−1∑
k=1

bkµ
B
k

)
biσ

2
z + µBi σ

2
i

)

For assets i ≥ ī, group B investors have 0 holdings and so µBi = 0. For these assets, it must be the case that the group B

investors’ marginal utility of holding the asset, taken at the equilibrium holdings, is strictly negative (otherwise, group B

investors would have an incentive to increase their holdings). This is equivalent to:

∀i ≥ ī, d− λbi − Pi(1 + r)− 1

γ

((
ī−1∑
k=1

bkµ
B
k

)
biσ

2
z

)
< 0

Finally, since arbitrageurs are not short-sales constrained, their holdings always satisfy the following first-order condition:

∀i ∈ [1, N ] : d− Pi(1 + r) =
1

γ

((
N∑
k=1

bkµ
a
k

)
biσ

2
z + µai σ

2
i

)

The market clearing condition for asset i is simply: αµ
A
i +µBi

2
+(1−α)µai = 1

N
. We sum the first-order conditions of investors

a, A and B for assets i < ī, and of investors a and A only for assets i ≥ ī, weighting the sum by the size of each investors
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group (i.e., α
2
for group A and B and 1− α for group a). This results in the following equations:


d− Pi(1 + r) =

1

γ

(
biσ

2
z +

σ2
i

N

)
for i < ī

(
1− α

2

)
(d− Pi(1 + r)) +

α

2
λbi =

1

γ

(
biσ

2
z +

σ2
i

N
− α

2
σ2
zbi

ī−1∑
k=1

bkµ
B
k

)
for i ≥ ī

(5)

Call SB =
∑ī−1
k=1 bkµ

B
k . S

B represents the exposure of group B investors to the aggregate factor z̃. We look for an expression

for SB . We start by using the first order conditions of group B investors on assets k < ī and plug in the equilibrium price

of assets k < ī found in the first equation of system (5):

∀k < ī, − λγbk + bkσ
2
z +

σ2
k

N
= SBbkσ

2
z + µBk σ

2
k

We can now simply multiply the previous equation by bk and divided it by σ2
k for all k < ī and sum up the resulting equations

for k < ī, which results in:

SB = −λγ

∑
k<ī

b2k
σ2
k

− Sσ2
z

∑
k<ī

b2k
σ2
k

+ σ2
z

∑
k<ī

b2k
σ2
k

+
∑
k<ī

bk
N

(6)

From the previous expression, we can now derive SB :

SB = 1−

(∑
k≥ī

bk
N

)
+ λγ

(∑
k<ī

b2k
σ2
k

)
1 + σ2

z

(∑
k<ī

b2
k

σ2
k

)
Now that we have a closed-form expression for SB , we simply plug it into the second equation of system 5. Define θ =

α
2

1−α
2
.

The price of assets i ≥ ī is then given by:

Pi(1 + r) = d− 1

γ

(
biσ

2
z +

σ2
i

N

)
+
θ

γ

biσ
2
z

λγ − σ2
z

∑
k≥ī

bk
N

σ2
z

(
1 + σ2

z

(∑
k<ī

b2
k

σ2
i

))
︸ ︷︷ ︸

=ω(λ)

−σ
2
i

N


︸ ︷︷ ︸

πi=speculative premium

(7)

The first equation of system 5 provides us with a simple expression for the price of assets i < ī:

Pi(1 + r) = d− 1

γ

(
biσ

2
z +

σ2
i

N

)
(8)

In order to derive the conditions under which the proposed equilibrium is indeed an equilibrium (i.e., ī is indeed the
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marginal asset), we need to derive the equilibrium holdings of group B investors:

µB,?i =


1

N
+
bi
σ2
i

σ2
z

(∑
i≥ī

bi
N

)
− λγ

1 + σ2
z

(∑
i<ī

b2i
σ2
i

)
 for i < ī

0 for i ≥ ī

We are now ready to derive the conditions under which the proposed equilibrium is indeed an equilibrium. The marginal

asset is asset ī if and only if ∂UB

∂µB
ī

(µB,?) < 0 and µBī−1 ≥ 0, where µB,? is group B investors’ holdings derived above. The

condition that the marginal utility of investing in asset ī for pessimist agents is equivalent to πī > 0 so that ī is the marginal

asset if and only if:

σ2
z

γN

∑
k≥ī

bk +
1

γN
bī−1

σ2
ī−1

1 + σ2
z

∑
k<ī

b2k
σ2
k

 ≥ λ > σ2
z

γN

∑
k≥ī

bk +
1

γN
bī
σ2
ī

1 + σ2
z

∑
k<ī

b2k
σ2
k



Call uk = 1

γN
bk
σk

(
1 + σ2

z

(∑
i<k

b2i
σ2
i

))
+

σ2
z
γ

(∑
i≥k

bi
N

)
. Clearly, uk is a strictly decreasing sequence as:

ui−1 − ui =
1

γN
bi−1

σ2
i−1

(
1 + σ2

z

( ∑
j<i−1

b2j
σ2
j

))
+
σ2
z

γ

 ∑
j≥i−1

bj
N

− 1

γN bi
σ2
i

(
1 + σ2

z

(∑
j<i

b2j
σ2
j

))
− σ2

z

γ

∑
j≥i

bj
N


=

1

γN

(
1 + σ2

z

( ∑
j<i−1

b2j
σ2
j

))(
σ2
i−1

bi−1
− σ2

i

bi

)
− 1

γN bi
σ2
i

σ2
z

b2i−1

σ2
i−1

+
σ2
z

γN
bi−1

=
1

γN

(
1 + σ2

z

( ∑
j<i−1

b2j
σ2
j

))(
σ2
i−1

bi−1
− σ2

i

bi

)
+

σ2
z

γN

b2i−1

σ2
i−1

(
σ2
i−1

bi−1
− σ2

i

bi

)

=
1

γN

(
1 + σ2

z

(∑
j<i

b2j
σ2
j

))(
σ2
i−1

bi−1
− σ2

i

bi

)
> 0

Define u0 = +∞ and uN+1 = 0. Then the sequence (ui)i∈[0,N+1] spans R+ and the marginal asset is simply defined as:

ī = min {k|λ > uk}. We know that ī > 0 since u0 = +∞. If ī = N + 1, then group B investors are long all assets and all

the previous formula apply except that there is no asset such that i ≥ ī. If ī ∈ [1, n], then the equilibrium has the proposed

structure, that is, investors B are long only assets i < ī.

We have so far assumed that ī > 1. The equilibrium is easily derived when ī = 1, that is, when all assets are over-priced.

In this case, SB = 0 and we directly have:

d− (1 + r)Pi =
1

γ
(1 + θ)

(
biσ

2
z +

σ2
ε

N

)
− θλbi.

This corresponds to the formula derived in Theorem 1 where we define
∑
i<1 b

2
i = 0. ī = 1 is an equilibrium if and only if

µB,?1 < 0, which is equivalent to λ < uN , as stated in the Theorem.

We now show that the equilibrium is unique. Let J = j|µBj > 0 – J is the set of assets that pessimists are long. It is

direct to show in this case that prices are given by:
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Pi(1 + r) =



d− 1

γ

(
biσ

2
z +

σ2
ε

N

)
for i ∈ J

d− 1

γ

(
biσ

2
z +

σ2
i

N

)
+
θ

γ

bi
λγ − σ2

z
N

(∑
i/∈J bi

)
1 + σ2

z

(∑
i∈J

b2i
σ2
i

)
− σ2

i

N


︸ ︷︷ ︸

πi=speculative premium

for i /∈ J (9)

The holdings of the pessimists can then be written as:

µB,?i =


1

N
+
bi
σ2
i

σ2
z

(∑
i/∈J

bi
N

)
− λγ

1 + σ2
z

(∑
i∈J

b2i
σ2
i

)
 for i ∈ J

0 for i /∈ J

In particular, this implies that for j ∈ J , we need to have bj
σ2
j

λγ−σ2
z

(∑
i/∈J

bi
N

)

1+σ2
z

(∑
i∈J

b2
i
σ2
i

)

 < 1
N

and for i 6∈ J that: bi

λγ−σ
2
z
N (

∑
i/∈J bi)

1+σ2
z

(∑
i∈J

b2
i
σ2
i

)

 >

σ2
i
N
.

It thus follows that for all j ∈ J and for all i /∈ J :

bi
σ2
i

>
1

N

 1 + σ2
z

(∑
i∈J

b2i
σ2
i

)
λγ − σ2

z

(∑
i/∈J

bi
N

)
 >

bj
σ2
j

.

It follows that the equilibrium structure is necessarily in the form of a cutoff and hence our equilibrium is unique.

B. Proof of Corollary 1

Proof. Corollary 1 characterizes overpricing. Overpricing for assets i ≥ ī is defined as the difference between the equilibrium

price and the price that would prevail in the absence of heterogenous beliefs and short sales constraints (α = 0). Overpricing

is just simply equal to the speculative premium:

∀i ≥ ī, Overpricingi = πi =
θ

γ

(
biσ

2
zω(λ)− σ2

i

N

)

By definition of the equilibrium, λ > uī, which is equivalent to bī
σ2
i
σ2
zω(λ) > 1

N
. Since assets are ranked in ascending

order of bi
σ2
i
, this directly implies that for i ≥ ī, πi > 0 and assets i ≥ ī are in fact overpriced. That mispricing is increasing

with the fraction of short-sales constrained investors α is direct as θ is a strictly increasing function of α. That mispricing

increases with bi and decreases with σ2
i is also directly seen from the definition of mispricing.28.

∀j > i ≥ ī, Overpricingj −Overpricingi =
θ

γ
σ2
zω(λ)(bj − bi)
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C. Proof of Corollary 2

Proof. Corollary 2 characterizes the amount of shorting in the equilibrium. We first need to derive the equilibrium holdings

of arbitrageurs. Group a holdings need to satisfy the following first-order conditions:

∀i ∈ [1, N ], d− Pi(1 + r) =
1

γ

(
biσ

2
z

(
N∑
k=1

µakbk

)
+ µai σ

2
i

)

Define Sa =
∑N
k=1 µ

a
kbk. Using the equilibrium pricing equation in equation 7 and equation 8, this first-order condition can

be rewritten as:

∀k ∈ [1, N ], bkσ
2
z +

σ2
k

N
− γπk1k≥ī = bkσ

2
zS

a + µakσ
2
k

We multiply each of these equations by bk, divide them by σ2
k and sum up the resulting equations for all i ∈ [1, N ] to

obtain:

Sa = 1−
γ
∑
k≥ī bk

πk

σ2
k

1 + σ2
z

(∑N
k=1

b2
k

σ2
k

)
We can now inject this expression for Sa in group a investors’ first-order conditions derived above. This yields the following

expression for group a investors’ holdings of assets i ∈ [1, N ]:

∀i ∈ [1, N ], µai σ
2
i =

σ2
i

N
− γπi1{i≥ī} + biσ

2
z

γ
∑
k≥ī bk

πk

σ2
k

1 + σ2
z

(∑N
k=1

b2
k

σ2
k

)
First remark that if i < ī, µai > 0, so that arbitrageurs are long assets i < ī. Now consider the case i ≥ ī. Notice from the

expression of the speculative premium that:

∀k, i ≥ ī, πk +
θσ2

k

γN
=
bk
bi

(
πi +

θσ2
i

γN

)

Thus, multiplying the previous expression by bk, dividing by σ2
k and summing over all k ≥ ī:

∑
k≥ī

bk
πk
σ2
k

+
θ

γN

∑
k≥ī

bk

 =

∑
k≥ī

b2k
σ2
k

πi +
θσ2
i

γN

bi


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Thus, for i ≥ ī:

γπi − biσ2
z

γ
∑
k≥ī bk

πk

σ2
k

1 + σ2
z

(∑N
k=1

b2
k

σ2
k

) = γπi − biσ
2
z

1 + σ2
z

(∑N
k=1

b2
k

σ2
k

)
∑

k≥ī

b2k
σ2
k

(γπi + θ
N
σ2
i

bi

)
− θ

N

∑
k≥ī

bk



= γπi
1 + σ2

z

(∑
k<ī

b2k
σ2
k

)
1 + σ2

z

(∑N
k=1

b2
k

σ2
k

) − σ2
z

1 + σ2
z

(∑N
k=1

b2
k

σ2
k

) θ

N

∑
k≥ī

σ2
i
b2k
σ2
k

− bi
∑
k≥ī

bk



= θ

bi
λγ − σ2

z
N

(∑
i≥ī bi

)
1 + σ2

z

(∑N
i=1

b2i
σ2
i

)
− σ2

i

N

1 + σ2
z

(∑
k<ī

b2k
σ2
k

)
1 + σ2

z

(∑N
k=1

b2
k

σ2
k

)

− 1

N

σ2
z

1 + σ2
z

(∑N
k=1

b2
k

σ2
k

)
σ2

i

∑
k≥ī

b2k
σ2
k

− bi
∑
k≥ī

bk




= θ

bi λγ

1 + σ2
z

(∑N
k=1

b2
k

σ2
k

) − σ2
i

N


We can now derive the actual holding of arbitrageurs on assets i ≥ ī:

∀i ≥ ī, µai =
1 + θ

N
− θ bi

σ2
i

λγ

1 + σ2
z

(∑N
k=1

b2
k

σ2
k

)
First, notice that arbitrageurs’ holdings are decreasing with i since bi

σ2
i
increases strictly with i. There is at least one asset

shorted by group a investors provided that µaN < 0, which is equivalent to λ > λ̂ = 1+θ
θ

1+σ2
z

(
∑N
k=1

b2k
σ2
k

)

N

σ2
N

γbN
. Provided this

is verified, there exists a unique ĩ ∈ [1, N ] such that µai < 0 ⇔ i ≥ ĩ. We know already that ĩ ≥ ī since for i < ī, group a

investors holdings are strictly positive. It is direct to see from the expression for group a investors holdings that provided

that i ≥ ĩ, we have:
∂|µai |
∂λ

> 0,
∂|µai |
∂ bi
σ2
i

> 0 and
∂2|µai |
∂λ∂bi

> 0

There is more shorting on assets with larger ratio of cash flow beta to idiosyncratic variance. There is more shorting the

larger is aggregate disagreement. The effect of aggregate disagreement on shorting is larger for assets with a high ratio of

cash-flow beta to idiosyncratic variance.

D. Proof of formula 3 for expected excess returns

Proof. From Theorem 1, we know that:

Pi(1 + r) = d− 1

γ

(
biσ

2
z +

σ2
I

N

)
+ 1i≥ī

θ

γ

(
biσ

2
zω(λ)− σ2

I

N

)

Call R̃ei the percentage excess return per share on asset i. R̃ei = d + biz̃ + ε̃i − (1 + r)Pi and E[r̃ei ] = d − (1 + r)Pi. Define

the market portfolio as the portfolio of all assets in the market. Since all assets have a supply of 1/N, the excess return per

share on the market portfolio is R̃em =
∑N
j=1

R̃ej
N
. Note Pm =

∑N
j=1

Pj
N

the price of the market portfolio. Stock i’s beta is
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defined as βi =
Cov(R̃ei ,R̃

e
m)

V ar(R̃em)
and can be written as:

βi =
biσ

2
z +

σ2
i
N

σ2
z +

∑N
k=1

σ2
k

N2

so that: biσ
2
z = βi

(
σ2
z +

N∑
k=1

σ2
k

N2

)
− σ2

i

N
.

We can thus substitute bi by βi in the price formula and derive an expression for expected excess returns per share as a

function of βi:

E[R̃ei ] = βi
σ2
z +

∑N
k=1

σ2
k

N2

γ

(
1− 1i≥īθω(λ)

)
+ θ

σ2
i

γN
1i≥ī(1 + ω(λ))

E. Proof of Corollary 3

Proof. We make this proof in the context of homoskedastic dividends: σ2
i = σ2

ε . We can write the actual excess returns as:

R̃ei =


βi
σ2
z +

σ2
ε
N

γ
+ η̃i for i < ī

βi
σ2
z +

σ2
ε
N

γ
(1− θω(λ)) +

σ2
ε

γN
θ(1 + ω(λ)) + η̃i for i ≥ ī

where η̃i = biz̃ + ε̃i.

Using the fact that by definition,
∑N
i=1 bi =

∑N
i=1 βi = N , a cross-sectional regression of realized excess returns per

share
(
R̃ei )

)
i∈[1,N ]

on (βi)i∈[1,N ] and a constant would deliver the following coefficient estimate:

µ̂ =

∑N
i=1 βiR̃i −

∑N
i=1 R̃i∑N

i=1 β
2
i −N

=
σ2
z +

σ2
ε
N

γ

(
1 +

γ

σ2
z

z̃ −

(∑
i≥ī β

2
i −

∑
i≥ī βi∑N

i=1 β
2
i −N

)
θω(λ)

)
+

∑
i≥ī (βi − 1)∑N
i=1 β

2
i −N

σ2
ε

γN
θ (1 + ω(λ))

Let
uī−1

γ
> λ1 > λ2 >

uī
γ
. Call ī1 (̄i2) the threshold associated with disagreement λ1 (resp. λ2). We have that ī1 = ī2 = ī.

Then:

µ̂(λ1)− µ̂(λ2) = − 1

γ

θ (ω(λ1)− ω(λ2))∑N
i=1 β

2
i −N

σ2
z

 N∑
i≥ī

β2
i −

N∑
i≥ī

βi

+
σ2
ε

N

N∑
i≥ī

(βi − 1)2



We show that
∑
i≥ī β

2
i ≥

∑
i≥ī βi. Since the average β is one, we can write βi as: βi = 1 + yi with yi such that

∑
yi = 0.

Using this decomposition, we have that:

N∑
i=1

β2
i = N + 2

N∑
i=1

yi︸ ︷︷ ︸
=0

+
N∑
i=1

y2 > N =
N∑
i=1

βi.
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Thus, the relationship is true for ī = 1. Now assume it is true for ī = k > 1. We have:
∑
i≥k+1 β

2
i −

∑
i≥k+1 βi =∑

i≥k β
2
i −

∑
i≥k βi + βk − β2

k. Either βk > 1 in which case it is evident that
∑
i≥k+1 β

2
i −

∑
i≥k+1 βi > 0 as βk > 1 implies

that βi > 1 for i ≥ k. Or βk ≤ 1 in which case βk−β2
k > 0 and using the recurrence assumption,

∑
i≥k+1 β

2
i −
∑
i≥k+1 βi > 0.

Thus, this proves that: µ̂(λ1)− µ̂(λ2) < 0.

We show now that for all i ∈ [1, N ], µ̂(λ) is continuous at ui where ui is the sequence defined in Theorem 1 and defined

by biσ2
zω(ui) =

σ2
ε
N
. When λ = u+

i , we have ī = i. When λ = u−i , we have ī = i+ 1. First, notice that ω(λ) is continuous at

ui and:

ω(u−i ) = ω(u+
i ) = ω(ui) =

σ2
ε

σ2
z

1

Nγ

1

bi

Thus:

µ̂
(
u+
i

)
− µ̂

(
u−i
)

= − θ
γ

βi − 1∑N
k=1 β

2
k −N

(
−βkω(uk)

(
σ2
z +

σ2
ε

N

)
+
σ2
ε

N
(1 + ω(uk))

)
= − θ

γ

βi − 1∑N
k=1 β

2
k −N

(
−biσ2

zω(ui) +
σ2
ε

N

)
= 0 by definition of ui.

Thus µ̂ is continuous and strictly decreasing for λ in ]ui+1, ui[, and it is continuous at λ = ui, so that it is overall strictly

decreasing in aggregate disagreement λ. Since the derivative of the slope of the security market line w.r.t. λ is linear in θ,

it is trivial that ∂2µ̂
∂λ∂θ

< 0, that is, the negative effect of λ on the slope of the security market line is stronger when there is

a larger fraction of short-sales constrained agents, that is, when θ is larger.

We can show that the slope of the security market line, µ̂, is strictly decreasing with θ, the fraction of short-sales

constrained investors in the model. Since the marginal asset ī is independent of θ and since we have already shown that:∑
i≥ī β

2
i −

∑
i≥ī βi, we directly have that:

∂µ̂

∂θ
= − ω(λ)

γ
(∑N

i=1 β
2
i −N

)
σ2

ε

N

∑
i≥ī

(βi − 1)2 + σ2
z

∑
i≥ī

β2
i −

∑
i≥ī

βi

 < 0

F. Proof of Theorem 2

Proof. We first consider the case where λ̃t = 0. There is no disagreement among investors so all investors are long all assets

i ∈ [1, N ]. There is thus a unique first order-condition for all investors’ type – for all j ∈ [1, N ] and k = a, A or B:

d− (1 + r)P jt (0) + Et[P jt+1(λ̃t+1)|λ̃t = 0] =
1

γ

bjσ2
z

∑
i≤N

µki (0)bi + µkj (0)σ2
j + ρ(1− ρ)∆P jt+1

∑
i≤N

µki (0)
(

∆P it+1

)
Summing up this equation across investors’ types, using the market clearing condition and dropping the time subscript leads

to:29

d− (1 + r)P j(0) + Et[P j(λ̃+1)|λ̃t = 0] =
1

γ

bjσ2
z +

σ2
j

N
+ ρ(1− ρ)∆P j

∑
i≤N

(
∆P i

)
N

 (10)
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Consider now the case where λt = λ. Importantly, note that investors disagree on the expected value of the aggregate factor

z̃t+1, but they agree on the expected value of asset i’s resale price Et[P j(λ̃t+1)]. This is because investors agree to disagree,

so they recognize the existence in the next generation of investors with heterogeneous beliefs – and in particular with beliefs

different from theirs. However, they nevertheless evaluate the t+ 1 expected dividend stream differently. We proceed as in

the static model. We assume there is a marginal asset ī, such that there are no binding short-sales constraints for assets

j < ī and strictly binding short-sales constraints for assets j ≥ ī. We check ex post the conditions under which this is indeed

an equilibrium. Under the proposed equilibrium structure, the first-order condition of the three groups of investors born at

date t for assets j < ī is easily written since, in the proposed equilibrium structure, these assets do not experience binding

short-sales constraints:

d+ bjλ
k
t − (1 + r)P j(λ) + Et[P j(λ̃t+1)|λ̃t = λ] =

1
γ

(
bjσ

2
z

(∑
i≤N µ

k
i (λ)bi

)
+ µkj (λ)σ2

j + ρ(1− ρ)∆P j
(∑

i≤N µ
k
i (λ)

(
∆P i

)))
Summing up across investors types (using the weight of each investors’ group) and using the market clearing condition

leads to:

∀j < ī, d− (1 + r)P j(λ) + Et[P j(λ̃+1)|λ̃t = λ] =
1

γ

bjσ2
z +

σ2
j

N
+ ρ(1− ρ)∆P j

∑
i≤N

∆P i

N

 (11)

Subtracting equation (10) –prices in the low disagreement state– from equation (11) leads to:

∀j < ī, − (1 + r)∆P j + ρ∆P j − (1− ρ)∆P j = 0⇔ P j(λ) = P j(0),

since ρ < 1.

Thus, for all j < ī, ∆P j = 0. The payoff of assets below j̄ is not sufficiently exposed to aggregate disagreement to make

pessimist investors willing to go short. Hence, even in the high disagreement state, these assets experience no mispricing

and in particular, their price is independent of the realization of aggregate disagreement. Aggregate disagreement thus only

creates resale price risk on these assets that experience binding short-sales constraint in the high aggregate disagreement

states, that is, the high b
σ2 assets with i ≥ ī.

We now turn to the assets with binding short-sales constraints in the high disagreement states, that is, assets j > ī. For

these assets, we know that under the proposed equilibrium µBj (λ) = 0 and we have the following first-order conditions for

HF and optimist MFs respectively:


d+ bjλ− (1 + r)P j(λ) + Et[P j(λ̃t+1)|λ̃ = λ] =

1

γ

bjσ2
z

∑
i≤N

µAi (λ)bi + µAj (λ)σ2
j + ρ(1− ρ)∆P jt+1

∑
i≤N

µAi (λ)∆P it+1


d− (1 + r)P j(λ) + Et[P j(λ̃t+1)|λ̃ = λ] =

1

γ

bjσ2
z

∑
i≤N

µai (λ)bi + µaj (λ)σ2
j + ρ(1− ρ)∆P jt+1

∑
i≤N

µai (λ)∆P it+1


Define Γ =

∑
i≥ī

∆P i

N
, the average price difference between high and low aggregate disagreement states across all assets.

Summing up these equations across investors’ types (using the weight of each investors’ group) and using the market clearing
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conditions lead to:

α
2
bjλ+ (1− α

2
)
(
d− (1 + r)P j(λ) + Et[P j(λ̃t+1)|λ̃t = λ]

)
=

1
γ

bjσ2
z +

σ2
j

N
+ ρ(1− ρ)∆P jΓ− α

2
bjσ

2
z

∑
i<ī

µBi (λ)bi︸ ︷︷ ︸
S1

−α
2
ρ(1− ρ)∆P j

∑
i<ī

µBi (λ)
(

∆P i
)

︸ ︷︷ ︸
S2=0


In the previous equation, S2 = 0 since for all i < ī, ∆P i = 0. To recover S1, we use B-investors’ first-order condition on

assets j < ī, the equilibrium prices derived above for assets j < ī and the fact that for all i < j̄, ∆P j = 0. This leads to the

following equation :

∀j < ī, bjσ
2
z

∑
i≤N

µBi bi︸ ︷︷ ︸
S1

+µBj σ
2
j = −λγbj + bjσ

2
z +

σ2
j

N

Multiplying the previous expression by bj , dividing by σ2
j , and summing up the equations over j gives the following formula

for S1:

S1 = 1−

(∑
i≥ī

bi
N

)
+ λγ

(∑
i<ī

b2i
σ2
i

)
1 + σ2

z

(∑
i<ī

b2i
σ2
i

)
This allows us to derive the excess return on assets j ≥ ī: å

d− (1 + r)P j(λ) + Et[P j(λ̃t+1)|λ̃t = λ]︸ ︷︷ ︸
Excess Return

=

1

γ

(
bjσ

2
z +

σ2
j

N
+ (1 + θ)ρ(1− ρ)∆P jΓ

)
︸ ︷︷ ︸

Risk Premium

− θ

γ

bj λγ − σ2
z
N

∑
k≥ī bk

1 + σ2
z

(∑
i<ī

b2i
σ2
i

) − σ2
j

N


︸ ︷︷ ︸

speculative premium=πj

Note that the risk premium embeds a term that reflects the resale price risk of high b assets. Subtracting equation (10) from

the previous equation yields, for all j ≥ ī:

−(1 + r)∆P j + (2ρ− 1)∆P j = −πj +
θρ(1− ρ)

γ
Γ∆P j ⇒

(
(1 + r)− (2ρ− 1) +

θρ(1− ρ)

γ
Γ

)
∆P j = πj (12)

Remember that Γ =
∑
i≥ī

∆P i

N
. We can thus obtain a formula for Γ by adding up the previous equations for all j ≥ ī and

dividing by N: (
(1 + r)− (2ρ− 1) +

θρ(1− ρ)

γ
Γ

)
Γ =

1

N

∑
j≥ī

πj

There is a unique Γ+ > 0 which satisfies the previous equation, call it Γ+:

Γ+ =
−(1 + r) + (2ρ− 1) +

√
((1 + r)− (2ρ− 1))2 + 4

N
θρ(1−ρ)

γ

∑
j≥ī π

j

2 θρ(1−ρ)
γ
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There is also a unique Γ− < 0 which satisfies equation 12:

Γ− =
−(1 + r) + (2ρ− 1)−

√
((1 + r)− (2ρ− 1))2 + 4

N
θρ(1−ρ)

γ

∑
j≥ī π

j

2 θρ(1−ρ)
γ

Let Γ? be the actual value of Γ, the average price difference between high and low aggregate disagreement states across

all assets. Γ? ∈ {Γ−,Γ+}. For j ≥ ī, the price difference is simply expressed as a function of the speculative premium πj

and Γ?:

∆P j =
πj

1 + r − (2ρ− 1) + θρ(1−ρ)
γ

Γ?
.

For the equilibrium to exist, it needs to be that for each asset j ≥ ī, the pessimists do not want to hold asset j, that is,

the marginal utility of holding assets j ≥ ī at the optimal holding is 0. This is equivalent to:

∀j ≥ ī d− bjλ− (1 + r)P j(λ) + ρP j(λ) + (1− ρ)P j(0)− 1

γ
bjσ

2
z

∑
j<ī

µBi bi︸ ︷︷ ︸
=S1

< 0

We have:

d− bjλ− (1 + r)P j(λ) + ρP j(λ) + (1− ρ)P j(0)− 1

γ
bjσ

2
zS

1

= −bjλ+
1

γ

(
bjσ

2
z +

σ2
j

N
+ ρ(1− ρ)(1 + θ)∆P jΓ?

)
− πj − 1

γ
bjσ

2
zS

1

= −π
j

θ
− πj + (1 + θ)

ρ(1− ρ)

γ
Γ?∆P j

=
1 + θ

θ
πj
(

θρ(1−ρ)
γ

Γ?

(1 + r)− (2ρ− 1) + θρ(1−ρ)
γ

Γ?
− 1

)

= −1 + θ

θ

(1 + r)− (2ρ− 1)

(1 + r)− (2ρ− 1) + θρ(1−ρ)
γ

Γ?
× πj

Assume that Γ? = Γ− < 0. We know that:

θρ(1− ρ)
Γ−

γ
+ (1 + r)− (2ρ− 1) =

(1 + r)− (2ρ− 1)−
√

((1 + r)− (2ρ− 1))2 + 4
N
θρ(1−ρ)

γ

∑
j≥ī π

j

2 θρ(1−ρ)
γ

< 0

Thus, if Γ? = Γ−, then − 1+θ
θ

(1+r)−(2ρ−1)

(1+r)−(2ρ−1)+
θρ(1−ρ)

γ
Γ
> 0 so that it has to be that for all j ≥ ī, πj < 0. Thus:

∑
j≥ī π

j < 0,

so that (
(1 + r)− (2ρ− 1) +

θρ(1− ρ)

γ
Γ−
)

Γ− < 0

However, the previous expression is strictly positive since Γ− < 0 and (1 + r)− (2ρ− 1) + θρ(1−ρ)
γ

Γ− < 0 as well. Thus, we

can’t have Γ? = Γ− and it has to be that Γ? = Γ+.

Since Γ? > 0, we have from the previous equilibrium condition that necessarily, for all j ≥ ī, πj > 0. Similarly, it is

direct to show that for pessimists to have strictly positive holdings of assets j̄ − 1, a necessary and sufficient condition is

that πj̄−1 < 0. Overall, this leads to the following equilibrium condition:
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σ2
z

N

∑
k≥ī

bk

+
1

N

σ2
j̄−1

bj̄−1

1 + σ2
z

∑
k<ī

b2k
σ2
k

 ≥ λγ ≥ σ2
z

N

∑
k≥ī

bk

+
1

N

σ2
j̄

bj̄

1 + σ2
z

∑
k<ī

b2k
σ2
k


We can define a sequence vi, analogous to the sequence ui defined in Theorem 1 as:

∀i ∈ [1, N ], vi =
σ2
z

N

∑
k≥i

bk

+
1

N

σ2
i

bi

(
1 + σ2

z

∑
k<i

b2k
σ2
k

)
, vN+1 = 0 and v0 = +∞

It is easily shown that this sequence is strictly decreasing since, for all i ∈ [2, N ]:

vi − vi−1 =
1

N

(
σ2
i

bi
− σ2

i−1

bi−1

)1 + σ2
z

∑
k<ī

b2k
σ2
k

 ,

and assets are ranked in ascending order of bi
σ2
i
.

The equilibrium condition can thus simply be written as vī−1 ≥ λγ ≥ vī and ī is thus defined as the smallest i ∈ [1, N ]

such that λγ ≥ vi.

We now move on to the expression for expected excess returns. Since ∆P j = 0 for j < ī, we have that for all j < ī:

E[Rj(λ)] = E[Rj(0)] = d− rP j(λ) = d− rP j(0) =
1

γ

(
bjσ

2
z +

σ2
j

N

)

For j ≥ ī, however:

E[Rj(0)] = d− (1 + r)P j(0) + ρP j(0) + (1− ρ)P j(λ)

=
1

γ

(
bjσ

2
z +

σ2
j

N
+ ρ(1− ρ)

Γ?

(1 + r)− (2ρ− 1) + θρ(1−ρ)
γ

Γ?
πj
)

The extra-term is the risk-premium required by investors for holding stocks which are sensitive to disagreement and are thus

exposed to changes in prices coming from changes in the aggregate disagreement state variable. Of course, in the data, since

ρ is very close to 1, this risk premium is going to be quantitatively small. Nevertheless, the intuition here is that high b
σ2

stocks have low prices in the low disagreement states for two reasons: (1) they are exposed to aggregate risk z̃ (2) they are

exposed to changes in aggregate disagreement λ̃. And finally:

E[Rj(λ)] = d− (1 + r)P j(λ) + ρP j(λ) + (1− ρ)P j(0)

=
1

γ

(
bjσ

2
z +

σ2
j

N
+ ρ(1− ρ)

Γ?

(1 + r)− (2ρ− 1) + θρ(1−ρ)
γ

Γ?
πj
)
− πj

+θ
ρ(1− ρ)

γ

Γ?

(1 + r)− (2ρ− 1) + θρ(1−ρ)
γ

Γ?
πj

=
1

γ

(
bjσ

2
z +

σ2
j

N
+ ρ(1− ρ)

Γ?

(1 + r)− (2ρ− 1) + θρ(1−ρ)
γ

Γ?
πj
)
− 1 + r − (2ρ− 1)

(1 + r)− (2ρ− 1) + θρ(1−ρ)
γ

Γ?
πj

Thus, for assets j ≥ ī, the expected return is strictly lower in high disagreement states than in low disagreement states.

The proof for the unicity of the equilibrium is similar to the proof of Theorem 1 and is thus omitted.
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G. Proof of Corrolary 4

Proof. Part (i) is a direct consequence of the formula for expected excess returns in Theorem 2. For (ii), we do a Taylor

expansion around ρ = 1 for Γ?: Γ? ≈ 1
r

∑
j≥ī

πj

N
> 0, so that in the vicinity of ρ = 1 and for j ≥ ī,

E[Rj(λ)] ≈ 1

γ

(
bjσ

2
z +

σ2
j

N

)
− 1 + r − (2ρ− 1)

(1 + r)− (2ρ− 1) + θρ(1−ρ)
γ

Γ?
πj

The slope of the security market line for assets i < ī (expressed as a function of bi – it would be equivalent as a function of

βi) is thus strictly lower for i < ī than for i ≥ ī in the vicinity of ρ = 1, which proves (ii). (iii) can also be seen directly from

the previous Taylor expansion and making λ grows to infinity. (iv) is also a direct consequence of the formula for expected

excess returns in Theorem 2.
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Table AII. Disagreement and Concavity of the Security Market Line: Different horizons

Note: Sample Period: 12/1981-12/2014. Sample: CRSP stock file excluding penny stocks (price < $5) and microcaps (stocks
in bottom 2 deciles of the monthly size distribution using NYSE breakpoints). At the beginning of each calendar month,
stocks are ranked in ascending order on the basis of their estimated beta at the end of the previous month. Pre-formation
betas are estimated with a market model using daily returns over the past calendar year and 5 lags of the market returns.
The ranked stocks are assigned to one of 20 value-weighted (panel A) or equal-weighted (panel B) portfolios based on NYSE
breakpoints. We compute the full sample beta of these 20-beta sorted portfolios using the same market model. We then
estimate every month the cross-sectional regression:

r
(k)
P,t = κ

(k)
t + π

(k)
t × βP + φ

(k)
t × (βP )2 + ε

(k)
P,t, where P = 1, ..., 20

and r(12)
P,t is the 12-months excess return of the P th beta-sorted portfolio and βP is the full sample post-ranking beta of the

P th beta-sorted portfolio. We then estimate second-stage regressions in the time-series using OLS and Newey-West adjusted
standard errors allowing for 11 lags:

φ
(k)
t = c1 + ψ1 ·Agg. Disp.t−1 +

∑
z∈Z

δz1 · z
(k)
t +

∑
x∈X

δx1 · xt−1 + ζt

π
(k)
t = c2 + ψ2 ·Agg. Disp.t−1 +

∑
z∈Z

δz1 · z
(k)
t +

∑
x∈X

δx2 · xt−1 + ωt

κ
(k)
t = c3 + ψ3 ·Agg. Disp.t−1 +

∑
z∈Z

δz3 · z
(k)
t +

∑
x∈X

δx3xt−1 + νt

Panel A use k=1 months, Panel B uses k=3 months, Panel C uses k=6 months, Panel D uses k=18 months. Column (1)
and (5) controls for Agg. Disp.t−1, the monthly β-weighted average of stock level disagreement measured as the standard
deviation of analyst forecasts on stocks’ long run growth of EPS. Column (2) and (6) add the factor z ∈ Z, where Z contains
the k-months excess market return from t to t+k−1 and the k-months return on HML, SMB, and UMD from t to t+k−1;
Column (3) and (7) add controls for the aggregate Dividend/Price ratio in t− 1 and the past-12 months inflation rate in t1;
Column (4) and (8) additionally control for the TED spread in month t − 1. T-statistics are in parenthesis. ∗, ∗∗, and ∗∗∗

means statistically different from zero at 10, 5 and 1% level of significance.

Dep. Var: φ
(k)
t π

(k)
t κ

(k)
t︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Panel A: k=1 months
Agg. Disp.t−1 -.21 -.31 -.57 -.66* -.0077 .53 .89 .96 .042 -.075 -.16 -.15

(-.38) (-.93) (-1.6) (-1.8) (-.0082) (.75) (1.2) (1.2) (.11) (-.21) (-.42) (-.38)

Panel A: k=3 months
Agg. Disp.t−1 -.98 -.99 -1.9** -2.1*** .48 1.6 2.8* 3* -.02 -.076 -.3 -.32

(-.81) (-1.3) (-2.3) (-2.6) (.24) (1.1) (1.7) (1.8) (-.025) (-.1) (-.36) (-.37)

Panel A: k=6 months
Agg. Disp.t−1 -2.8 -2.5* -4.4*** -4.7*** 2.5 4.5 6.9** 6.9** -1.1 -.92 -1.2 -1

(-1.3) (-1.7) (-2.9) (-3.1) (.76) (1.6) (2.3) (2.3) (-.85) (-.74) (-.87) (-.74)

Panel A: k=18 months
Agg. Disp.t−1 -6.4** -7.4** -12*** -12*** 7.7* 12** 18*** 17*** -4* -3.2 -4 -3.5

(-2) (-2.3) (-3.5) (-3.4) (1.7) (2.1) (2.7) (2.7) (-1.9) (-1.3) (-1.5) (-1.4)
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Table AVI. Disagreement and the Slope of the Security Market Line

Note: Sample Period: 12/1981-12/2014. Sample: CRSP stock file excluding penny stocks (price < $5)
and microcaps (stocks in bottom 2 deciles of the monthly size distribution using NYSE breakpoints). At
the beginning of each calendar month, stocks are ranked in ascending order on the basis of their estimated
beta at the end of the previous month. Pre-formation betas are estimated with a market model using
daily returns over the past calendar year and 5 lags of the market returns. The ranked stocks are assigned
to one of 20 value-weighted (Panel A) or equal-weighted (Panel B) portfolios based on NYSE breakpoints.
We compute the full sample beta of these 20-beta sorted portfolios using the same market model. We
estimate every month the cross-sectional regression:

r
(12)
P,t = κt + πt × βP + εP,t, where P = 1, ..., 20

and r(12)
P,t is the 12-months excess return of the P th beta-sorted portfolio and βP is the full sample post-

ranking beta of the P th beta-sorted portfolio. We then estimate second-stage regressions in the time-series
using OLS and Newey-West adjusted standard errors allowing for 11 lags:





πt = c1 + ψ1 ·Agg. Disp.t−1 +
∑

z∈Z
δz1 · z(k)

t +
∑

x∈X
δx1 · xt−1 + ωt

κt = c2 + ψ2 ·Agg. Disp.t−1 +
∑

z∈Z
δz2 · z(k)

t +
∑

x∈X
δx3xt−1 + νt

Column (1) and (5) controls for Agg. Disp.t−1, the monthly β-weighted average of stock level disagreement
measured as the standard deviation of analyst forecasts on stocks’ long run growth of Earnings per Share
(EPS). Column (2) and (6) add the factor z ∈ Z, where Z contains the k-months excess market return
from t to t + k − 1 and the k-months return on HML, SMB, and UMD from t to t + k − 1; Column (3)
and (7) add controls for the aggregate Dividend/Price ratio in t− 1 and the past-12 months inflation rate
in t1; Column (4) and (8) additionally control for the TED spread in month t − 1. T-statistics are in
parenthesis. ∗, ∗∗, and ∗∗∗ means statistically different from zero at 10, 5 and 1% level of significance.
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Table AVI (Continued):

Dep. Var: πt κt︷ ︸︸ ︷ ︷ ︸︸ ︷
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Value-Weighted Portfolios
Agg. Disp.t−1 -6.1** -.86 -4.9** -5.7*** 1.8 1.9 6.1*** 6.6***

(-2.1) (-.39) (-2.3) (-2.7) (.7) (.89) (2.8) (3)
R(12)
m,t .6*** .58*** .59*** .4*** .43*** .42***

(5.1) (6.6) (6.1) (3.5) (4.7) (4.2)
HML(12)

t -.61*** -.48*** -.44*** .77*** .64*** .6***
(-3.2) (-3) (-2.9) (4) (4.1) (4)

SMB(12)
t .48** .63*** .62*** -.44* -.6*** -.59***

(2.1) (3.4) (3.5) (-1.9) (-3.2) (-3.3)
UMD(12)

t -.0036 .031 .051 -.0033 -.039 -.054
(-.03) (.31) (.58) (-.031) (-.45) (-.65)

D/Pt−1 -3.9* -6** 3.9* 5.4*
(-1.8) (-2.3) (1.7) (1.8)

Inflationt−1 -3.2* -4.4** 3.4** 4.2**
(-1.9) (-2.1) (2.2) (2.3)

Ted Spreadt−1 3.6* -2.5
(1.8) (-1.3)

Constant .87 -2.6 -3.3 -3.8* 8.5*** 2.5 3.3* 3.6*
(.31) (-1.2) (-1.6) (-1.8) (3.2) (1.2) (1.7) (1.7)

Panel B: Equal-Weighted Portfolios

Agg. Disp.t−1 -5.1* -.46 -4.1** -4.8*** 3.8 2.1 6.3*** 7***
(-1.9) (-.26) (-2.5) (-3) (1.6) (1.1) (3.3) (3.6)

R(12)
m,t .6*** .58*** .59*** .4*** .43*** .42***

(5.2) (6.6) (6.1) (3.3) (4.5) (4.1)
HML(12)

t -.66*** -.54*** -.5*** .96*** .83*** .79***
(-4) (-3.7) (-3.5) (5.4) (5.6) (5.9)

SMB(12)
t .7*** .84*** .84*** -.11 -.28* -.28*

(3.9) (5.4) (5.4) (-.55) (-1.7) (-1.7)
UMD(12)

t -.11 -.077 -.057 .11 .068 .048
(-.93) (-.78) (-.67) (.95) (.71) (.57)

D/Pt−1 -3.3* -5.3** 3.4 5.4**
(-1.8) (-2.6) (1.6) (2)

Inflationt−1 -3.1* -4.3** 4.1*** 5.2***
(-1.8) (-2.2) (2.6) (3.1)

Ted Spreadt−1 3.6** -3.5*
(2.1) (-1.9)

Constant .2 -2.6 -3.2* -3.7* 9.5*** 1.6 2.2 2.7
(.073) (-1.4) (-1.7) (-1.9) (3.5) (.83) (1.2) (1.4)
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