EPFL & SFI

Asset Pricing Theory

Problem Set 6: Dynamic Arbitrage Pricing

1. First Theorem of Asset Pricing

Consider a discrete-time economy, as considered in the lecture notes, with two risky assets,
By and S;. Assume that both are strictly positive at all times and that ownership of S; at ¢
entitles you to a dividend D, paid at ¢t + 1.

1. Consider the value of a self-financing portfolio V; = AYB; + A}S;. Write down its
dynamics.

2. Consider the value V;* = %tt of the self-financing portfolio expressed in units of asset

By, the numeraire asset. Write down its dynamics in terms of the discounted risky asset
Sy = S;/B; and the discounted dividend D} = D,/B;.
3. Formulate and then prove the first fundamental theorem of asset pricing for this economy.

In particular, show that if there is no arbitrage, then there exists a measure ) equivalent
to P under which the following holds:
o S = E?[ ¥11 + Df, 1], and equivalently,
o for T >t Sf=E?[YF_,. D+ S5
4. Show that if there is no arbitrage, then there exists a stochastic discount factor (or
pricing kernel) process M, that is strictly positive and such that :

o MSy = Ey[My1+1(Si+1 + Diy1)], and equivalently,

o 1= Et[MA’Zl Ry 1] for the gross return Ry11 = St*%tm“, as well as:
o for T > t: MySy = B[S}, M,Dy, + MrSr]

2. Multiple Periods, Complete Markets: Cox, Ross Rubinstein

The purpose of this exercise is to take you through Cox, Ross, and Rubinstein’s derivation of
the Black and Scholes formula as a limit of the discrete-time multiperiod binomial model.

Suppose now that period T is subdivided into n periods of A = T'/n. At each time ¢; =
1A Vi=0,...,n—1, the dynamics of the risky asset and the risk-free asset are given by:

Sit1 = Wiy - S

Szo+1 = Ry- SZQ

where W' Vi = 1,...,n are i.i.d. random variables, which can take each of two values u,, with
probability p and d,, with probability 1 — p.



1. Show that the market (S°,S) is dynamically complete, in the sense that any time-T
random variable h(S7) can be perfectly replicated by a self-financing dynamic trad-
ing strategy in the risk-free and risky asset. Importantly, we impose the no-arbitrage
restrictions

Up > Ry > d,.
Here, R, and w}" indicates the dependence on n in the sense that n is the time frequency
that controls the approximation to the continuous time limit.
Hint: use a recursive argument.

Proof. Please see item 6 at the end of this problem set: Replication in binomial models:
You find the optimal portfolio recursively.

The equivalent martingale measure assigns probabilities 1 — q = (uy, — Ry)/(un — dy)
and ¢ = (R, — dy,)/(un — dy) to children nodes of the tree. Then, we can multiply these
probabilities to get the full probability measure

n

dQ = &P with & = [[(qlap=u, + (1 — @) lar=a,) (1)
=1

Now, we know from item 6 below that markets are complete and

Xn = Xn/Sg = EQ[Xn] + ZTF,‘(SZ‘+1—SZ‘), g@ = SZ/SZO

and

Xp1=E2 (X, = ¢Xu(u) + (1 - q) X, (d)

whereas

Xn = Xno1 + mu-1(Sis1— Si)
implying that

Tn—1 =

Sivi(w) = S)  (Sita(d) - 5))
where we use X, (u) to denote the value of X, is the node of the binomial tree corre-
sponding to an up-move in S. Now,

X (u) —Xn,1 _ Xn(d) —Xn,1
(

Xn(u) - anl = (1 - Q)(Xn(u) - Xn(d))

and

so that

1 Xn(u) — X (d)
Up, — dp,

S 1Th—1 = (X"(u) _Xn(d))(un_Rn)
n—1Tn— (u/Rp — 1) (up — dy)

Clearly, the same works for any other i. This gives a constructive formula for the repli-
cating portfolio: compute X;11 = FE;11[X,] and then

:R;

Xi—i—l(u) - Xi—i—l(d)

Uy — dp

S'ﬁri = R;l

The same argument works for any Markov chain with two states.

2. Prove that there is a unique equivalent martingale measure. Find the distribution of w}

under the equivalent measure and define the associated probabilities 71'7? and 1 — 77,?.
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3. We now want to find the price of a contingent claim with payoff:
h(St) = max(St — K,0), i.e. a European call option. And in particular, we would like
to compute the limit of that formula as n — oo for a given T', i.e. A — 0.
Let us define Y,, = Y7 | log(w;™). Clearly St = Sp-exp(Y;). We have to pick Ry, un, dp
so that the distribution of the stock price converges to that of a geometric brownian
motion, for which we have : St = Sy exp ((,u - %Q)T + aZ(T)) where Z(T') is a normally
distributed random variable with zero mean and variance T' (i.e., Z(T) ~ N(0,T)).
Show that if we pick p = 0.5, u, = exp(a, + 0,), d, = exp(a,, — 0y,) for appropriate
O, 0y, we get the desired convergence. Show that the natural choice of R, is exp(rA)
where r is the continuously compounded risk-free rate.
Hint: prove it by showing the convergence of the characteristic function of Y, to that
of a standard normal distribution (recall that X is a standard normal if and only if
its characteristic function ¢(t) = Elexp(itX)] = exp(‘Tﬁ) - for the general theorem on
characteristic functions see the book by Williams chap. 16 for example).

4. We now turn to the convergence of the option price. Show that the call option price can
be written as follows:

K
0(5070) = SOB(n77777T§) - ﬁB(nanaﬂ-g)

n

(Yn—E"[Yn] < N=ET[Yn]
VTV NGNS
an up realization for w} under two different measures.

where B(n,n,m) =1— P ) Find  and 7%, 7% the probability of

Hint: Since markets are complete, the price of any payoff must equal the value of a
self-financing trading strategy. The price of a call option C(Sy,0) can then be expressed
as an expectation of its discounted final payoff under the risk-neutral measure (why?).
Then notice that the distribution of exp(Yy) under the historial measure is P(exp(Y,,) =
ukdn=F) = CFpF(1 — p)" % Vk = 0,...,n, where we use the standard notation CF =
Notice that the formula could easily be implemented on a computer to find the values
of a European call option. Here we are interested in the continuous-time limit of that
formula.

5. Show that X, = %ﬁg’}b] converges in distribution towards a centered gaussian random
variable.
Hint: Prove the convergence of the characteristic function of X,,. Also remember that
Y, is the sum of i.i.d. random variables.

6. Compute and find the limit as n — 0o of E™ [Y,], E™[Y,], V™ [V,], V™ [Y;] to derive
the Black and Scholes formula as the limit of the discrete time price of the Furopean
call option.

Hint: Remember Y, is the sum of i.i.d random variables.

7. Write the resulting limiting Option Pricing Formula.

3. Kolmogorov Equations I

Let Xy be a Markov chain with values z; and transition probabilities m(x;,x;). Prove Kol-
mogorov equations:
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Elg(X7)|F] = Elg(X7) | Xi] = G(t,Xy)

satisfies
G(t,:) = Y plwi,x;) Gt+1, 1)
J
We have by the law of iterated expectations that

Elg(XT) | X4] NP = E[Eu1[9(X7)]| Xi]

iterated expectations

gV, E[E[g(X7)|[Xi41]] Xi]
Markov property

= E[G(t+1,Xp)|IXi] = > plas, ;) Gt +1,z))
J
2. define transition matrix II with II = (p(z;,x;)). Then, prove
G(t.a) = 7" g(a)
This follows by induction: The above calculation implies
G(t,z) = MG(t+1,2) = IPG(t + 2, )
— o = ITG(T,x) = I Elg(Xp)| X7 = 2] = I g(a).
3. Let -
V(z) = ) e E[X,| Xo =]
t=0
Prove that
V) =z +e"IV() © V() = Id—e ")tz

There are two ways. First,

Viz) = Y e ™EX;|Xg=1] = E[Y_ e X;| Xy =a]
t=0 t=0

= E[E\[)_ e X]| Xo = 2]
t=0

= E[E]Y e ™X;|X1]| Xo = 2]

o0
= E[Xo + E])_ e "X |X1]| Xo = 1]

t=1
00

=z + e "E[E]))_ e Xy |X1]| Xo = 2]
t=0
= + e "ElV(X)|Xo=2] = 2+ e "IV (x)
Alternatively,
E[Xy|Xo=2] = 'z
by the above and therefore

V(z) = Z eIz = (Id—e ") .
t=0
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4. Kolmogorov Equations II

1.

8.

A

Suppose X; = Y7---Y; so that

Xit1 = XuYi (5)

Y; is a Markov process with transition probabilities II
X; is not a Markov process
(X4, Y:) is a two-dimensional Markov process
X, takes “too many values”
Define

V(X, Y1) = E

9]
= B (Y ¢ XealXe Y,

s=0

oo
—Ts
§ e Xiys

s=0

Derive Kolmogorov equation
V(Xe,Y:) = Xy + e "EfV(Xit1, Yir1)]

Indeed,

o0

V(X)) = E | e Xyl X, Y,
=0

o0

S=
= X, + E|) e "Xl XY
s=1

o0
D e TUX XY

= Xt + e "E
s=1
[e%9)
= Xy + e "E B> e XX Y
iterated expectations s=1 (7)

= Xy +e'E E[Z 67T(S*1)Xt+s\Xt+17YZ+1]|Xt7Yt

Markov property s=1
00

=X, + e 'FE E[E e " Xigpsp1| X1, Y] | X1, Yy
s=0

:V(X;rlvytﬂ)
= X + e "By V(Xiy1, Yeg1)]

Make an Ansatz
Viz,y) = zv(y)
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to get that
VX, V)
N——

=X (Y?)
= X; + e "EfV(Xiq1, Yig1)]
N —

=Xip10(Yig1) (8)
= X + e "B X 1v(Yig)]

= Xt + e "E Xy Yirv(Yig)]
(5)
= X; + e "E[XtYipiv(Yin)]

and therefore

v(¥) = 1+ e "EYino(Vin)] = 1+ ey p(V,yp)y0(y)),

which in vector form becomes

v(y) = 1 + e "lldiag(y)v(y)

where 1 is the vector of ones.

. Prove

v(y) = (Id—e "lldiag(y Z e ""(Ildiag(y))" 1
Theorem This series converges if and only if the spectral radius
p(Idiag(y)) = max(leig(Ildiag(y))])

satisfies
p(Ildiag(y)) < € 9)

5. Kolmogorov Equations II1

NS ot W=

Suppose X; = Y;---Y;

Zy is a Markov process with transition probabilities II, YV; = Y (Z;)
ry = r(Z;) (monetary policy)

X, is not a Markov process

(X4, Y}:) is a two-dimensional Markov process

X, takes “too many values”

Define

o0
> e S0 X | X, Z (10)
s=0

= F

o 1
o
E e~ Xm0 Tt+T Xits

s=0

V(Xt, Zy) = Ey
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8. Derive Kolmogorov equation
VX4, Zy) = X + e " EyV(Xi11, Zig)]
Indeed,

oo
s—1
E e 2r=0" Xy | Xy, Zy
s=0

V(X1,Z,) = E

=X + FE

o0

_ s—1
> e =0T X (| X0, Y,
s=1

o0
s—1
Y em Xm0t X | XY

= Xy + e "E
s=1
> s—1
= Xy + e "E B> e 2T X 1KY
iterated expectations s=1 (11)

= X + e ™FE
~— t
Markov property

s s—1
E[Z e” X1 Xy U Xy, Yig]| X, Y
s=1

o0
= X; + ¢ "E |E[) e 20" Xy o] X1, Vi) | X0, Vi
s=0

=V (Xt4+1,Yi41)
= Xi + e "EfV(Xiy1,Yiq1)]

9. We now make the Ansatz
V(Xm Y%) = XtU(Y;f)

10. Substituting that X;11 = X;Yiy1 and V(X,Y:) = Xw(Yy) and V(X41,Yi41) =
Xir1v(Yip1) = Xpp1 = XeYi1v(Yiq), we get

X)) = X + e "B XY (Zip)v(Ziy)] <
v(Z) = 1 + e "B (Z)o(Zin)] = 1 + "> p(Zy, 7)Y (z)v(z)),
J

which in vector form becomes

v(z) = 1 + diag(e ") diag(Y (2))v(z)

11. Prove
v(z) = (Id - diag(e”"*)diag(Y ()1 = Y (diag(e ")) diag(Y (2)))" 1
=0

Theorem This series converges if and only if the spectral radius

p(Idiag(y)) = max(|eig(diag(e " P diag(Y (2)))|) < 1
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6. Replication and Binomial Trees
Stochastic Integrals
Definition Given a martingale M;, the process

t—1

t
Xy =) m(My1—M,) =7 M = / s dM,
s=0 0

is called the stochastic integral of m with w.r.t. M

Lemma X; is a Martingale
Proof X1 = Xy + m; (My+1 — M) implies

Ey[Xi11] = Xy + 7 By[Myy — My] = Xy
Self-Financing Portfolio Gains Processes

e there are two investment opportunities: risk-less with zero interest rate (bank account)
and stock with price process M;

e 7 is the number of shares of the stock purchased at time ¢

e the total gains process change is
X1 — Xy = m (Mt+1 - Mt)

e that is
Xy = Xo+7m- M

Replication and Martingale Representation for the Binomial Model
o Let
My = Yi Y,
where Y; are i.i.d., Y; = u or d with prob. p such that pu+ (1 — p)d = 1. Then, M is a
martingale.
e F; is the natural filtration of Y;
e X7 is a Fp-measurable random variable
e then,
Xr1 = Er4[X7]
and solving
{XT—l + 71 (u—1)Mpr_y = Xp(u, X7_1)
Xra+mr_1(d—1)Mpr_y = Xp(d, X7-1)

gives the replicating portfolio mp_1
Why is there a solution: first derivation

pu+(1—p)d =1 < p =

e the system has a solution if and only if

Xr(u, Xp—1) — Xr1 Xr(d, Xr_1) — Xr_1

(u—1) Mpr_y - (d—1) Mr_;
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e by direct algebraic calculation, this is equivalent to

1—-d u—1
7dXT(U>XT—1) t T Xr(d, X7-1) =Xr_1 &

pX7(u, Xr—1)+ (1 —p)Xp(d, X7-1) = X171

that is
Xro1 = Epa[Xr].

Second Derivation
e for any Fp_i-measurable random variable, we have
Er_1[Xp_1 + 71 (Mp — Mr_1)] = Xp_1 (12)
o if Ep_1[Xp| = Xp_; then
Xr(d, Xr-1) = (Xr—1 —p X7(u, X7-1))/(1 = D)

e thus, if we have two variables Z; and Zs that have the same value at the state u and
both satisfy Ep_1[Z1] = Ep_1[Zs], they have the same value in the state d

e thus, if Xp_1 + mp_1 (u — 1)MT_1 = XT(U,XT_l) then we get

Xro1+mroa(d—1)Mr—y = Xp(d, X7-1)
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