
EPFL & SFI

Asset Pricing Theory

Problem Set 6: Dynamic Arbitrage Pricing

1. First Theorem of Asset Pricing

Consider a discrete-time economy, as considered in the lecture notes, with two risky assets,
Bt and St. Assume that both are strictly positive at all times and that ownership of St at t
entitles you to a dividend Dt+1 paid at t+ 1.

1. Consider the value of a self-financing portfolio Vt = ∆0
tBt + ∆1

tSt. Write down its
dynamics.

2. Consider the value V ∗
t = Vt

Bt
of the self-financing portfolio expressed in units of asset

Bt, the numeraire asset. Write down its dynamics in terms of the discounted risky asset
S∗
t = St/Bt and the discounted dividend D∗

t = Dt/Bt.

3. Formulate and then prove the first fundamental theorem of asset pricing for this economy.
In particular, show that if there is no arbitrage, then there exists a measure Q equivalent
to P under which the following holds:

• S∗
t = EQ

t [S
∗
t+1 +D∗

t+1], and equivalently,

• for T > t: S∗
t = EQ

t [
∑T

n=t+1D
∗
n + S∗

T ]

4. Show that if there is no arbitrage, then there exists a stochastic discount factor (or
pricing kernel) process Mt that is strictly positive and such that :

• MtSt = Et[Mt+1(St+1 +Dt+1)], and equivalently,

• 1 = Et[
Mt+1

Mt
Rt+1] for the gross return Rt+1 =

St+1+Dt+1

St
, as well as:

• for T > t: MtSt = Et[
∑T

n=t+1MnDn +MTST ]

2. Multiple Periods, Complete Markets: Cox, Ross Rubinstein

The purpose of this exercise is to take you through Cox, Ross, and Rubinstein’s derivation of
the Black and Scholes formula as a limit of the discrete-time multiperiod binomial model.

Suppose now that period T is subdivided into n periods of ∆ = T/n. At each time ti =
i∆ ∀i = 0, . . . , n− 1, the dynamics of the risky asset and the risk-free asset are given by:

Si+1 = w̃n
i+1 · Si

S0
i+1 = Rn · S0

i

where w̃n
i ∀i = 1, . . . , n are i.i.d. random variables, which can take each of two values un with

probability p and dn with probability 1− p.
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1. Show that the market (S0, S) is dynamically complete, in the sense that any time-T
random variable h(ST ) can be perfectly replicated by a self-financing dynamic trad-
ing strategy in the risk-free and risky asset. Importantly, we impose the no-arbitrage
restrictions

un > Rn > dn.

Here, Rn and w̃n
i indicates the dependence on n in the sense that n is the time frequency

that controls the approximation to the continuous time limit.

Hint: use a recursive argument.

Proof. Please see item 6 at the end of this problem set: Replication in binomial models:
You find the optimal portfolio recursively.

The equivalent martingale measure assigns probabilities 1 − q = (un − Rn)/(un − dn)
and q = (Rn − dn)/(un − dn) to children nodes of the tree. Then, we can multiply these
probabilities to get the full probability measure

dQ = ξdP with ξ =
n∏

i=1

(q1w̃n
i =un + (1− q)1w̃n

i =dn) (1)

Now, we know from item 6 below that markets are complete and

X̃n = Xn/S
0
n = EQ[Xn] +

∑
i

πi(S̃i+1 − S̃i), S̃i = Si/S
0
i

and
X̃n−1 = EQ

n−1[Xn] = qXn(u) + (1− q)Xn(d)

whereas
X̃n = X̃n−1 + πn−1(S̃i+1 − S̃i)

implying that

πn−1 =
X̃n(u) − X̃n−1

(S̃i+1(u)− S̃i)
=

X̃n(d) − X̃n−1

(S̃i+1(d)− S̃i)

where we use Xn(u) to denote the value of Xn is the node of the binomial tree corre-
sponding to an up-move in S. Now,

X̃n(u)− X̃n−1 = (1− q)(X̃n(u)− X̃n(d))

and
S̃i+1(u)− S̃i = S̃i(u/Rn − 1)

so that

S̃n−1πn−1 =
(X̃n(u)− X̃n(d))(un −Rn)

(u/Rn − 1)(un − dn)
= R−1

n

X̃n(u)− X̃n(d)

un − dn

Clearly, the same works for any other i. This gives a constructive formula for the repli-
cating portfolio: compute X̃i+1 = Ei+1[X̃n] and then

S̃iπi = R−1
n

X̃i+1(u)− X̃i+1(d)

un − dn

The same argument works for any Markov chain with two states.

2. Prove that there is a unique equivalent martingale measure. Find the distribution of w̃n
1

under the equivalent measure and define the associated probabilities πQ
n and 1− πQ

n .
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3. We now want to find the price of a contingent claim with payoff:
h(ST ) = max(ST −K, 0), i.e. a European call option. And in particular, we would like
to compute the limit of that formula as n → ∞ for a given T , i.e. ∆ → 0.

Let us define Yn =
∑n

i=1 log(w̃i
n). Clearly ST = S0 ·exp(Yn). We have to pick Rn, un, dn

so that the distribution of the stock price converges to that of a geometric brownian

motion, for which we have : ST = S0 exp
(
(µ− σ2

2 )T + σZ(T )
)
where Z(T ) is a normally

distributed random variable with zero mean and variance T (i.e., Z(T ) ∼ N(0, T )).

Show that if we pick p = 0.5, un = exp(αn + σn), dn = exp(αn − σn) for appropriate
αn, σn we get the desired convergence. Show that the natural choice of Rn is exp(r∆)
where r is the continuously compounded risk-free rate.

Hint: prove it by showing the convergence of the characteristic function of Yn to that
of a standard normal distribution (recall that X is a standard normal if and only if

its characteristic function ϕ(t) = E[exp(itX)] = exp(−t2

2 ) - for the general theorem on
characteristic functions see the book by Williams chap. 16 for example).

4. We now turn to the convergence of the option price. Show that the call option price can
be written as follows:

C(S0, 0) = S0B(n, η, πR
n )−

K

Rn
n

B(n, η, πQ
n )

where B(n, η, π) = 1 − P (Yn−Eπ [Yn]√
V π [Yn]

< η−Eπ [Yn]√
V π [Yn]

) Find η and πQ, πR the probability of

an up realization for w̃n
1 under two different measures.

Hint: Since markets are complete, the price of any payoff must equal the value of a
self-financing trading strategy. The price of a call option C(S0, 0) can then be expressed
as an expectation of its discounted final payoff under the risk-neutral measure (why?).
Then notice that the distribution of exp(Yn) under the historial measure is P (exp(Yn) =
uknd

n−k
n ) = Ck

np
k(1 − p)n−k ∀k = 0, . . . , n, where we use the standard notation Ck

n =
n!

k!(n−k)! .

Notice that the formula could easily be implemented on a computer to find the values
of a European call option. Here we are interested in the continuous-time limit of that
formula.

5. Show that Xn = Yn−Eπ
n [Yn]√

V π
n [Yn]

converges in distribution towards a centered gaussian random

variable.

Hint: Prove the convergence of the characteristic function of Xn. Also remember that
Yn is the sum of i.i.d. random variables.

6. Compute and find the limit as n → ∞ of EπQ
n [Yn], E

πR
n [Yn], V

πQ
n [Yn], V

πR
n [Yn] to derive

the Black and Scholes formula as the limit of the discrete time price of the European
call option.

Hint: Remember Yn is the sum of i.i.d random variables.

7. Write the resulting limiting Option Pricing Formula.

3. Kolmogorov Equations I

Let Xt be a Markov chain with values xi and transition probabilities π(xi, xj). Prove Kol-
mogorov equations:
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1.
E[g(XT ) | Ft] = E[g(XT ) |Xt] = G(t,Xt)

satisfies
G(t, xi) =

∑
j

p(xi, xj)G(t+ 1, xj)

We have by the law of iterated expectations that

E[g(XT ) |Xt] =︸︷︷︸
iterated expectations

= E[Et+1[g(XT )]|Xt]

=︸︷︷︸
Markov property

E[E[g(XT )|Xt+1]|Xt]

= E[G(t+ 1, Xt+1)|Xt] =
∑
j

p(xi, xj)G(t+ 1, xj)

(2)

2. define transition matrix Π with Π = (p(xi, xj)). Then, prove

G(t, x) = ΠT−t g(x)

This follows by induction: The above calculation implies

G(t, x) = ΠG(t+ 1, x) = Π2G(t+ 2, x)

= · · · = ΠT−tG(T, x) = ΠT−tE[g(XT )|XT = x] = ΠT−t g(x) .
(3)

3. Let

V (x) =
∞∑
t=0

e−rtE[Xt |X0 = x]

Prove that
V (x) = x + e−r ΠV (x) ⇔ V (x) = (Id− e−r Π)−1 x

There are two ways. First,

V (x) =
∞∑
t=0

e−rtE[Xt |X0 = x] = E[
∞∑
t=0

e−rtXt |X0 = x]

= E[E1[

∞∑
t=0

e−rtXt ]|X0 = x]

= E[E[
∞∑
t=0

e−rtXt |X1]|X0 = x]

= E[X0 + E[
∞∑
t=1

e−rtXt |X1]|X0 = x]

= x + e−rE[E[

∞∑
t=0

e−rtXt+1 |X1]|X0 = x]

= x + e−rE[V (X1)|X0 = x] = x + e−r ΠV (x)

(4)

Alternatively,
E[Xt|X0 = x] = Πtx

by the above and therefore

V (x) =

∞∑
t=0

e−rtΠtx = (Id− e−r Π)−1 x .
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4. Kolmogorov Equations II

1. Suppose Xt = Y1 · · ·Yt so that

Xt+1 = Xt Yt+1 (5)

2. Yt is a Markov process with transition probabilities Π

3. Xt is not a Markov process

4. (Xt, Yt) is a two-dimensional Markov process

5. Xt takes “too many values”

6. Define

V (Xt, Yt) = Et

[ ∞∑
s=0

e−rsXt+s

]
= E

[ ∞∑
s=0

e−rsXt+s|Xt, Yt

]
(6)

7. Derive Kolmogorov equation

V (Xt, Yt) = Xt + e−rEt[V (Xt+1, Yt+1)]

Indeed,

V (Xt, Yt) = E

[ ∞∑
s=0

e−rsXt+s|Xt, Yt

]

= Xt + E

[ ∞∑
s=1

e−rsXt+s|Xt, Yt

]

= Xt + e−rE

[ ∞∑
s=1

e−r(s−1)Xt+s|Xt, Yt

]

=︸︷︷︸
iterated expectations

Xt + e−rE

[
Et+1[

∞∑
s=1

e−r(s−1)Xt+s]|Xt, Yt

]

=︸︷︷︸
Markov property

Xt + e−rE

[
E[

∞∑
s=1

e−r(s−1)Xt+s|Xt+1, Yt+1]|Xt, Yt

]

= Xt + e−rE

E[

∞∑
s=0

e−rsXt+s+1|Xt+1, Yt+1]︸ ︷︷ ︸
=V (Xt+1,Yt+1)

|Xt, Yt


= Xt + e−rEt[V (Xt+1, Yt+1)]

(7)

8. Make an Ansatz
V (x, y) = xv(y)
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to get that
V (Xt, Yt)︸ ︷︷ ︸
=Xtv(Yt)

= Xt + e−rEt[V (Xt+1, Yt+1)︸ ︷︷ ︸
=Xt+1v(Yt+1)

]

= Xt + e−rEt[Xt+1v(Yt+1)]

=︸︷︷︸
(5)

Xt + e−rEt[XtYt+1v(Yt+1)]

= Xt + e−rEt[XtYt+1v(Yt+1)]

(8)

and therefore

v(Yt) = 1 + e−rEt[Yt+1v(Yt+1)] = 1 + e−r
∑
j

p(Yt, yj)yjv(yj),

which in vector form becomes

v(y) = 1 + e−rΠdiag(y)v(y)

where 1 is the vector of ones.

9. Prove

v(y) = (Id− e−rΠ diag(y))−11 =

∞∑
τ=0

e−rτ (Π diag(y))τ 1

Theorem This series converges if and only if the spectral radius

ρ(Π diag(y)) = max(|eig(Π diag(y))|)

satisfies
ρ(Π diag(y)) < er (9)

5. Kolmogorov Equations III

1. Suppose Xt = Y1 · · ·Yt
2. Zt is a Markov process with transition probabilities Π, Yt = Y (Zt)

3. rt = r(Zt) (monetary policy)

4. Xt is not a Markov process

5. (Xt, Yt) is a two-dimensional Markov process

6. Xt takes “too many values”

7. Define

V (Xt, Zt) = Et

[ ∞∑
s=0

e−
∑s−1

τ=0 rt+τXt+s

]
= E

[ ∞∑
s=0

e−
∑s−1

τ=0 rt+τXt+s|Xt, Zt

]
(10)
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8. Derive Kolmogorov equation

V (Xt, Zt) = Xt + e−rtEt[V (Xt+1, Zt+1)]

Indeed,

V (Xt, Zt) = E

[ ∞∑
s=0

e−
∑s−1

τ=0 rt+τXt+s|Xt, Zt

]

= Xt + E

[ ∞∑
s=1

e−
∑s−1

τ=0 rt+τXt+s|Xt, Yt

]

= Xt + e−rE

[ ∞∑
s=1

e−
∑s−1

τ=0 rt+τXt+s|Xt, Yt

]

=︸︷︷︸
iterated expectations

Xt + e−rtE

[
Et+1[

∞∑
s=1

e−
∑s−1

τ=1 rt+τXt+s]|Xt, Yt

]

=︸︷︷︸
Markov property

Xt + e−rtE

[
E[

∞∑
s=1

e−
∑s−1

τ=1 rt+τXt+s|Xt+1, Yt+1]|Xt, Yt

]

= Xt + e−rtE

E[
∞∑
s=0

e−
∑s

τ=0 rt+τXt+s+1|Xt+1, Yt+1]︸ ︷︷ ︸
=V (Xt+1,Yt+1)

|Xt, Yt


= Xt + e−rtEt[V (Xt+1, Yt+1)]

(11)

9. We now make the Ansatz
V (Xt, Yt) = Xtv(Yt)

10. Substituting that Xt+1 = XtYt+1 and V (Xt, Yt) = Xtv(Yt) and V (Xt+1, Yt+1) =
Xt+1v(Yt+1) = Xt+1 = XtYt+1v(Yt+1), we get

Xtv(Yt) = Xt + e−r(Zt)Et[XtY (Zt+1)v(Zt+1)] ⇔

v(Zt) = 1 + e−r(Zt)Et[Y (Zt+1)v(Zt+1)] = 1 + e−r(Zt)
∑
j

p(Zt, zj)Y (zj)v(zj),

which in vector form becomes

v(z) = 1 + diag(e−r(z))Πdiag(Y (z))v(z)

11. Prove

v(z) = (Id− diag(e−r(z))Πdiag(Y (z)))−11 =
∞∑
τ=0

(diag(e−r(z))Π diag(Y (z)))τ 1

Theorem This series converges if and only if the spectral radius

ρ(Π diag(y)) = max(|eig(diag(e−r(z))Π diag(Y (z)))|) < 1
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6. Replication and Binomial Trees
Stochastic Integrals

Definition Given a martingale Mt, the process

Xt =
t−1∑
s=0

πs (Ms+1 −Ms) = π · M =

∫ t

0
πs dMs

is called the stochastic integral of π with w.r.t. M

Lemma Xt is a Martingale

Proof Xt+1 = Xt + πt (Mt+1 −Mt) implies

Et[Xt+1] = Xt + πtEt[Mt+1 −Mt] = Xt

Self-Financing Portfolio Gains Processes

• there are two investment opportunities: risk-less with zero interest rate (bank account)
and stock with price process Mt

• πt is the number of shares of the stock purchased at time t

• the total gains process change is

Xt+1 −Xt = πt (Mt+1 −Mt)

• that is
Xt = X0 + π · M

Replication and Martingale Representation for the Binomial Model

• Let
Mt = Y1 · · · Yt

where Yt are i.i.d., Yt = u or d with prob. p such that pu+ (1− p)d = 1. Then, M is a
martingale.

• Ft is the natural filtration of Yt

• XT is a FT -measurable random variable

• then,
XT−1 = ET−1[XT ]

and solving {
XT−1 + πT−1 (u− 1)MT−1 = XT (u,XT−1)

XT−1 + πT−1 (d− 1)MT−1 = XT (d,XT−1)

gives the replicating portfolio πT−1

Why is there a solution: first derivation

•
pu+ (1− p)d = 1 ⇔ p =

1− d

u− d

• the system has a solution if and only if

XT (u,XT−1)−XT−1

(u− 1)MT−1
=

XT (d,XT−1) − XT−1

(d− 1)MT−1
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• by direct algebraic calculation, this is equivalent to

1− d

u− d
XT (u,XT−1) +

u− 1

u− d
XT (d,XT−1) = XT−1 ⇔

pXT (u,XT−1) + (1− p)XT (d,XT−1) = XT−1

that is
XT−1 = ET−1[XT ].

Second Derivation

• for any FT−1-measurable random variable, we have

ET−1[XT−1 + πT−1 (MT −MT−1)] = XT−1 (12)

• if ET−1[XT ] = XT−1 then

XT (d,XT−1) = (XT−1 − pXT (u,XT−1))/(1− p)

• thus, if we have two variables Z1 and Z2 that have the same value at the state u and
both satisfy ET−1[Z1] = ET−1[Z2], they have the same value in the state d

• thus, if XT−1 + πT−1 (u− 1)MT−1 = XT (u,XT−1) then we get

XT−1 + πT−1 (d− 1)MT−1 = XT (d,XT−1)
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